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Preface

Vast amounts of data are collected by service providers and system administra-
tors, and are available in public information systems. Data mining technologies
provide an ideal framework to assist in analyzing such collections for computer
security and surveillance-related endeavors. For instance, system administrators
can apply data mining to summarize activity patterns in access logs so that
potential malicious incidents can be further investigated. Beyond computer se-
curity, data mining technology supports intelligence gathering and summariza-
tion for homeland security. For years, and most recently fueled by events such
as September 11, 2001, government agencies have focused on developing and
applying data mining technologies to monitor terrorist behaviors in public and
private data collections.

The application of data mining to person-specific data raises serious concerns
regarding data confidentiality and citizens’ privacy rights. These concerns have
led to the adoption of various legislation and policy controls. In 2005, the Eu-
ropean Union passed a data-retention directive that requires all telephone and
Internet service providers to store data on their consumers for up to two years to
assist in the prevention of terrorism and organized crime. Similar data-retention
regulation proposals are under heated debate in the United States Congress. Yet,
the debate often focuses on ethical or policy aspects of the problem, such that
resolutions have polarized consequences; e.g., an organization can either share
data for data mining purposes or it can not. Fortunately, computer scientists,
and data mining researchers in particular, have recognized that technology can
be constructed to support less polarized solutions. Computer scientists are devel-
oping technologies that enable data mining goals without sacrificing the privacy
and security of the individuals to whom the data correspond.

To inject privacy into security and surveillance data mining projects, it is
necessary to understand the goals of the latter. To further this exchange and
highlight advances in research, we organized the First International Workshop
on Privacy, Security, and Trust in KDD (PinKDD).

The First International Workshop on Privacy, Security, and Trust in KDD
(PinKDD 2007) was held in conjunction with the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. The workshop
was held on August 12, 2007 in San Jose, California and brought together re-
searchers, as well as practitioners, working on how privacy, security, and trust can
be resolved or modeled within a data mining framework. The PinKDD workshop
attracted considerable attention from the research community, as well as support
from industrial organizations and academic institutions. The workshop received
many high-quality research paper submissions, each of which was reviewed by
a minimum of three members of the Program and Organizing Committee. In
all, eight papers were selected for presentation at the workshop and inclusion in



VI Preface

the workshop’s post-proceedings. The papers represented the diversity of data
mining research issues in privacy, security, and trust. In addition to two research
sessions, the workshop highlights included a keynote talk which was delivered by
Cynthia Dwork (Microsoft Research) and a spirited panel discussion on privacy
issues in weblogs: the panel consisted of Ricardo Baeza-Yates (Yahoo Research),
Cynthia Dwork (Microsoft Research), Lise Getoor (University of Maryland, Col-
lege Park), and David Jensen (University of Massachusetts Amherst).

November 2007 Francesco Bonchi
Elena Ferrari

Bradley Malin
Yücel Saygin
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An Ad Omnia Approach to Defining and

Achieving Private Data Analysis

Cynthia Dwork

Microsoft Research
dwork@microsoft.com

Abstract. We briefly survey several privacy compromises in published
datasets, some historical and some on paper. An inspection of these
suggests that the problem lies with the nature of the privacy-motivated
promises in question. These are typically syntactic, rather than semantic.
They are also ad hoc, with insufficient argument that fulfilling these
syntactic and ad hoc conditions yields anything like what most people
would regard as privacy. We examine two comprehensive, or ad omnia,
guarantees for privacy in statistical databases discussed in the literature,
note that one is unachievable, and describe implementations of the other.

In this note we survey a body of work, developed over the past five years, ad-
dressing the problem known variously as statistical disclosure control, inference
control, privacy-preserving datamining, and private data analysis. Our principal
motivating scenario is a statistical database. A statistic is a quantity computed
from a sample. Suppose a trusted and trustworthy curator gathers sensitive in-
formation from a large number of respondents (the sample), with the goal of
learning (and releasing to the public) statistical facts about the underlying pop-
ulation. The problem is to release statistical information without compromising
the privacy of the individual respondents. There are two settings: in the non-
interactive setting the curator computes and publishes some statistics, and the
data are not used further. Privacy concerns may affect the precise answers re-
leased by the curator, or even the set of statistics released. Note that since the
data will never be used again the curator can destroy the data (and himself)
once the statistics have been published.

In the interactive setting the curator sits between the users and the database.
Queries posed by the users, and/or the responses to these queries, may be mod-
ified by the curator in order to protect the privacy of the respondents. The
data cannot be destroyed, and the curator must remain present throughout the
lifetime of the database.

There is a rich literature on this problem, principally from the satistics com-
munity [11, 15, 24, 25, 26, 34, 36, 23, 35] (see also the literature on controlled
release of tabular data, contingency tables, and cell suppression), and from such
diverse branches of computer science as algorithms, database theory, and cryp-
tography [1, 10, 22, 28], [3, 4, 21, 29, 30, 37, 43], [7, 9, 12, 13, 14, 19, 8, 20]; see
also the survey [2] for a summary of the field prior to 1989.

F. Bonchi et al. (Eds.): PinKDD 2007, LNCS 4890, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 C. Dwork

Clearly, if we are not interested in utility, then privacy can be trivially
achieved: the curator can be silent, or can release only random noise. Through-
out the discussion we will implicitly assume the statistical database has some
non-trivial utility, and we will focus on the definition of privacy.

When defining privacy, or any other security goal, it is important to specify
both what it means to compromise the goal and what power and other resources
are available to the adversary. In the current context we refer to any information
available to the adversary from sources other than the statistical database as
auxiliary information. An attack that uses one database as auxiliary information
to compromise privacy in a different database is frequently called a linkage attack.
This type of attack is at the heart of the vast literature on hiding small cell counts
in tabular data (“cell suppression”).

1 Some Linkage Attacks

1.1 The Netflix Prize

Netflix recommends movies to its subscribers, and has offered a $1,000,000 prize
for a 10% improvement in its recommendation system (we are not concerned here
with how this is measured). To this end, Netflix has also published a training
data set. According to the Netflix Prize rules webpage, “The training data set
consists of more than 100 million ratings from over 480 thousand randomly-
chosen, anonymous customers on nearly 18 thousand movie titles” and “The
ratings are on a scale from 1 to 5 (integral) stars. To protect customer privacy,
all personal information identifying individual customers has been removed and
all customer ids have been replaced by randomly-assigned ids. The date of each
rating and the title and year of release for each movie are provided” (emphasis
added).

Netflix data are not the only movie ratings available on the web. There is also
the International Movie Database (IMDb) site, where individuals may register
for an account and rate movies. The users need not choose to be anonymous.
Publicly visible material includes the user’s movie ratings and comments, to-
gether with the dates of the ratings.

Narayanan and Shmatikov [32] cleverly used the IMDb in a linkage attack on
the anonymization of the Netflix training data set. They found, “with 8 movie
ratings (of which we allow 2 to be completely wrong) and dates that may have
a 3-day error, 96% of Netflix subscribers whose records have been released can
be uniquely identified in the dataset” and “for 89%, 2 ratings and dates are
enough to reduce the set of plausible records to 8 out of almost 500,000, which
can then be inspected by a human for further deanonymization.” In other words,
the removal of all “personal information” did not provide privacy to the users
in the Netflix training data set. Indeed, Narayanan and Shmatikov were able to
identify a particular user, about whom they drew several unsavory conclusions.
Note that Narayanan and Shmatikov may have been correct in their conclusions
or they may have been incorrect, but either way this user is harmed.
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1.2 k-Anonymization and Sequelae

The most famous linkage attack was obtained by Sweeney [40], who identified the
medical records of the governor of Massachusetts by linking voter registration
records to “anonymized” Massachusetts Group Insurance Commission (GIC)
medical encounter data, which retained the birthdate, sex, and zip code of the
patient. Sweeney proposed an antidote: k-anonymity [38, 39, 41, 42]. Roughly
speaking, this is a syntactic condition requiring that every “quasi-identifier” (es-
sentially, combination of non-sensitive attributes) must appear at least k times
in the published database, if it occurs at all. This can be achieved by coarsen-
ing attribute categories, for example, replacing 5-digit zipcodes by their 3-digit
prefixes. There are many problems with k-anonymity (computational complex-
ity and the fact that the choice of category coarsenings may reveal information
about the database, to name two), but the biggest problem is that it simply
does not provide strong privacy; a lot of information my still be leaked about re-
spondents/individuals in the database. Machanavajjhala, Gehrke, and Kifer [30]
discuss this problem, and respond by proposing a new criterion for the published
database: �-diversity. However, Xiao and Tao [43] note that multiple �-diverse
data releases completely compromise privacy. They propose a different syntactic
condition: m-invariance.

The literature does not contain any direct attack on m-invariance (although,
see Section 2.1 for general difficulties). However it is clear that something is going
wrong: the “privacy” promises are syntactic conditions on the released datasets,
but there is insufficient argument that the syntactic conditions have the correct
semantic implications.

1.3 Anonymization of Social Networks

In a social network graph, nodes correspond to users (or e-mail accounts, or tele-
phone numbers, etc), and edges have various social semantics (friendship, fre-
quent communications, phone conversations, and so on). Companies that hold
such graphs are frequently asked to release an anonymized version, in which
node names are replaced by random strings, for study by social scientists. The
intuition is that the anonymized graph reveals only the structure, not the po-
tentially sensitive information of who is socially connected to whom. In [5] it is
shown that anonymization does not protect this information at all; indeed it is
vulnerable both to active and passive attacks. Again, anonymization is just an
ad hoc syntactic condition, and has no privacy semantics.

2 On Defining Privacy for Statistical Databases

One source of difficulty in defining privacy for statistical databases is that the
line between “inside”and “outside” is slightly blurred. In contrast, when Alice
and her geographically remote colleague Bob converse, Alice and Bob are the
“insiders,” everyone else is an “outsider,” and privacy can be obtained by any
cryptosystem that is semantically secure against a passive eavesdropper.
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Let us review this notion. Informally, semantic security says that the cipher-
text (encryption of the message to be transmitted) reveals no information about
the plaintext (the message). This was formalized by Goldwasser and Micali [27]
along the following lines. The ability of the adversary, having access to both the
ciphertext and any auxiliary information, to learn (anything about) the plaintext
is compared to the ability of a party having access only to the auxiliary informa-
tion (and not the ciphertext), to learn anything about the plaintext1. Clearly,
if this difference is very, very tiny, then in a rigorous sense the ciphertext leaks
(almost) no information about the plaintext.

The formalization of semantic security along these lines is one of the pillars of
modern cryptography. It is therefore natural to ask whether a similar property
can be achieved for statistical databases. However, unlike the eavesdropper on a
conversation, the statistical database attacker is also a user, that is, a legitimate
consumer of the information provided by the statistical database, so this attacker
is both a little bit of an insider (not to mention that she may also be a respondent
in the database), as well as an outsider, to whom certain fine-grained information
should not be leaked.

2.1 Semantic Security for Statistical Databases?

In 1977 Tor Dalenius articulated an ad omnia privacy goal for statistical data-
bases: anything that can be learned about a respondent from the statistical
database should be learnable without access to the database. Happily, this for-
malizes to semantic security (although Dalenius’ goal predated the Goldwasser
and Micali definition by five years). Unhappily, however, it cannot be achieved,
both for small and big reasons. It is instructive to examine these in depth.

Many papers in the literature attempt to formalize Dalenius’ goal (in some
cases unknowingly) by requiring that the adversary’s prior and posterior views
about an individual (i.e., before and after having access to the statistical
database) shouldn’t be “too different,” or that access to the statistical database
shouldn’t change the adversary’s views about any individual “too much.” Of
course, this is clearly silly, if the statistical database teaches us anything at all.
For example, suppose the adversary’s (incorrect) prior view is that everyone has
2 left feet. Access to the statistical database teaches that almost everyone has
one left foot and one right foot. The adversary now has a very different view of
whether or not any given respondent has two left feet. Even when used correctly,
in a way that is decidedly not silly, this prior/posterior approach suffers from
definitional awkwardness [21, 19, 8].

At a more fundamental level, a simple hybrid argument shows that it is im-
possible to achieve cryptographically small levels of “tiny” difference between
an adversary’s ability to learn something about a respondent given access to the
database, and the ability of someone without access to the database to learn
something about a respondent. Intuitively, this is because the user/adversary is

1 The definition in [27] deals with probabilistic polynomial time bounded parties. This
is not central to the current work so we do not emphasize it in the discussion.
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supposed to learn unpredictable and non-trivial facts about the data set (this
is where we assume some degree of utility of the database), which translates to
learning more than cryptographically tiny amounts about an individual. How-
ever, it may make sense to relax the definition of “tiny.” Unfortunately, even this
relaxed notion of semantic security for statistical databases cannot be achieved.

The final nail in the coffin of hope for Dalenius’ goal is a formalization of the
following difficulty. Suppose we have a statistical database that teaches average
heights of population subgroups, and suppose further that it is infeasible to
learn this information (perhaps for financial reasons) any other way (say, by
conducting a new study). Consider the auxiliary information “Terry Gross is
two inches shorter than the average Lithuanian woman.” Access to the statistical
database teaches Terry Gross’ height. In contrast, someone without access to the
database, knowing only the auxiliary information, learns much less about Terry
Gross’ height.

A rigorous impossibility result generalizes and formalizes this argument, ex-
tending to essentially any notion of privacy compromise. The heart of the attack
uses extracted randomness from the statistical database as a one-time pad for
conveying the privacy compromise to the adversary/user [16].

This brings us to an important observation: Terry Gross did not have to
be a member of the database for the attack described above to be prosecuted
against her. This suggests a new notion of privacy: minimize the increased risk
to an individual incurred by joining (or leaving) the database. That is, we move
from comparing an adversary’s prior and posterior views of an individual to
comparing the risk to an individual when included in, versus when not included
in, the database. This new notion is called differential privacy.

Remark 1. It might be remarked that the counterexample of Terry Gross’ height
is contrived, and so it is not clear what it, or the general impossibility result
in [16], mean. Of course, it is conceivable that counterexamples exist that would
not appear contrived. More significantly, the result tells us that it is impossible to
construct a privacy mechanism that both preserves utility and provably satisfies
at least one natural formalization of Dalenius’ goal. But proofs are important:
they let us know exactly what guarantees are made, and they can be verified by
non-experts. For these reasons it is extremely important to find ad omnia privacy
goals and implementations that provably ensure satisfaction of these goals.

2.2 Differential Privacy

In the sequel, the randomized function K is the algorithm applied by the curator
when releasing information. So the input is the data set, and the output is the
released information, or transcript. We do not need to distinguish between the
interactive and non-interactive settings.

Think of a database as a set of rows. We say databases D1 and D2 differ in at
most one element if one is a subset of the other and the larger database contains
just one additional row.
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Definition 1. A randomized function K gives ε-differential privacy if for all
data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S], (1)

where the probability space in each case is over the coin flips of the mechanism K.

A mechanism K satisfying this definition addresses all concerns that any par-
ticipant might have about the leakage of her personal information: even if the
participant removed her data from the data set, no outputs (and thus conse-
quences of outputs) would become significantly more or less likely. For example,
if the database were to be consulted by an insurance provider before deciding
whether or not to insure a given individual, then the presence or absence of
that individual’s data in the database will not significantly affect her chance of
receiving coverage.

Differential privacy is therefore an ad omnia guarantee. It is also a very strong
guarantee, since it is a statistical property about the behavior of the mechanism
and therefore is independent of the computational power and auxiliary informa-
tion available to the adversary/user.

Differential privacy is not an absolute guarantee of privacy. As we have seen,
any statistical database with any non-trivial utility can compromise privacy.
However, in a society that has decided that the benefits of certain databases
outweigh the costs, differential privacy ensures that only a limited amount of
additional risk is incurred by participating in the (socially beneficial) databases.

Remark 2. 1. The parameter ε is public. The choice of ε is essentially a social
question and is beyond the scope of this paper. That said, we tend to think
of ε as, say, 0.01, 0.1, or in some cases, ln 2 or ln 3. If the probability that
some bad event will occur is very small, it might be tolerable to increase it
by such factors as 2 or 3, while if the probability is already felt to be close
to unacceptable, then an increase of e0.01 ≈ 1.01 might be tolerable, while
an increase of e, or even only e0.1, would be intolerable.

2. Definition 1 extends to group privacy as well (and to the case in which an
individual contributes more than a single row to the database). A collection
of c participants might be concerned that their collective data might leak
information, even when a single participant’s does not. Using this definition,
we can bound the dilation of any probability by at most exp(εc), which may
be tolerable for small c. Of course, the point of the statistical database is
to disclose aggregate information about large groups (while simultaneously
protecting individuals), so we should expect privacy bounds to disintegrate
with increasing group size.

3 Achieving Differential Privacy in Statistical Databases

We now describe an interactive mechanism, K, due to Dwork, McSherry, Nissim,
and Smith [20]. A query is a function mapping databases to (vectors of) real
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numbers. For example, the query “Count P” counts the number of rows in the
database having property P .

When the query is a function f , and the database is X , the true answer is
the value f(X). The K mechanism adds appropriately chosen random noise to
the true answer to produce what we call the response. The idea of preserving
privacy by responding with a noisy version of the true answer is not new, but
this approach is delicate. For example, if the noise is symmetric about the origin
and the same question is asked many times, the responses may be averaged,
cancelling out the noise2. We must take such factors into account.

Definition 2. For f : D → IRd, the sensitivity of f is

Δf = max
D1,D2

‖f(D1) − f(D2)‖1 (2)

for all D1, D2 differing in at most one element.

In particular, when d = 1 the sensitivity of f is the maximum difference in the
values that the function f may take on a pair of databases that differ in only
one element. For now, let us focus on the case d = 1.

For many types of queries Δf will be quite small. In particular, the simple
counting queries discussed above (“How many rows have property P?”) have
Δf = 1. Our techniques work best – ie, introduce the least noise – when Δf is
small. Note that sensitivity is a property of the function alone, and is indepen-
dent of the database. The sensitivity essentially captures how great a difference
(between the value of f on two databases differing in a single element) must be
hidden by the additive noise generated by the curator.

On query function f the privacy mechanism K computes f(X) and adds
noise with a scaled symmetric exponential distribution with standard deviation√

2Δf/ε. In this distribution, denoted Lap(Δf/ε), the mass at x is proportional
to exp(−|x|(ε/Δf)).3 Decreasing ε, a publicly known parameter, flattens out
this curve, yielding larger expected noise magnitude. When ε is fixed, functions
f with high sensitivity yield flatter curves, again yielding higher expected noise
magnitudes.

The proof that K yields ε-differential privacy on the single query function f is
straightforward. Consider any subset S ⊆ Range(K), and let D1, D2 be any pair
of databases differing in at most one element. When the database is D1, the prob-
ability mass at any r ∈ Range(K) is proportional to exp(−|f(D1) − r|(ε/Δf)),
and similarly when the database is D2. Applying the triangle inequality in the

2 We do not recommend having the curator record queries and their responses so
that if a query is issued more than once the response can be replayed. One reason
is that if the query language is sufficiently rich, then semantic equivalence of two
syntactically different queries is undecidable. Even if the query language is not so
rich, the devastating attacks demonstrated by Dinur and Nissim [14] pose completely
random and unrelated queries.

3 The probability density function of Lap(b) is p(x|b) = 1
2b

exp(− |x|
b

), and the variance
is 2b2.
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exponent we get a ratio of at most exp(−|f(D1)− f(D2)|(ε/Δf)). By definition
of sensitivity, |f(D1) − f(D2)| ≤ Δf , and so the ratio is bounded by exp(−ε),
yielding ε-differential privacy.

It is easy to see that for any (adaptively chosen) query sequence f1, . . . , fd, ε-
differential privacy can be achieved by running K with noise distribution
Lap(

∑
i Δfi/ε) on each query. In other words, the quality of each answer deterio-

rates with the sum of the sensitivities of the queries. Interestingly, it is sometimes
possible to do better than this. Roughly speaking, what matters is the maxi-
mum possible value of Δ = ||(f1(D1), f2(D1), . . . , fd(D1))−(f1(D2), f2(D2), . . . ,
fd(D2))||1. The precise formulation of the statement requires some care, due to
the potentially adaptive choice of queries. For a full treatment see [20]. We state
the theorem here for the non-adaptive case, viewing the (fixed) sequence of
queries f1, f2, . . . , fd as a single d-ary query f and recalling Definition 2 for the
case of arbitrary d.

Theorem 1. For f : D → IRd, the mechanism Kf that adds independently
generated noise with distribution Lap(Δf/ε) to each of the d output terms enjoys
ε-differential privacy.

Among the many applications of Theorem 1, of particular interest is the class of
histogram queries. A histogram query is an arbitrary partitioning of the domain
of database rows into disjoint “cells,” and the true answer is the set of counts
describing, for each cell, the number of database rows in this cell. Although a
histogram query with d cells may be viewed as d individual counting queries,
the addition or removal of a single database row can affect the entire d-tuple of
counts in at most one location (the count corresponding to the cell to (from)
which the row is added (deleted); moreover, the count of this cell is affected by
at most 1, so by Definition 2, every histogram query has sensitivity 1.

4 Utility of K and Some Limitations

The mechanism K described above has excellent accuracy for insensitive queries.
In particular, the noise needed to ensure differential privacy depends only on the
sensitivity of the function and on the parameter ε. Both are independent of the
database and the number of rows it contains. Thus, if the database is very large,
the errors for many questions introduced by the differential privacy mechanism
is relatively quite small.

We can think of K as a differential privacy-preserving interface between the
analyst and the data. This suggests a line of research: finding algorithms that
require few, insensentitive, queries for standard datamining tasks. As an exam-
ple, see [8], which shows how to compute singular value decompositions, find
the ID3 decision tree, carry out k-means clusterings, learn association rules, and
learn anything learnable in the statistical queries learning model using only a
relatively small number of counting queries. See also the more recent work on
contingency tables (and OLAP cubes) [6].
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It is also possible to combine techniques of secure function evaluation with
the techniques described above, permitting a collection of data holders to coop-
eratively simulate K; see [17] for details.

Recent Extensions. Sensitivity of a function f is a global notion: the worst
case, over all pairs of databases differing in a single element, of the change in
the value of f . Even for a function with high sensitivity, it may be the case
that “frequently” – that is, for “many” databases or “much” of the time – the
function is locally insensitive. That is, much of the time, adding or deleting a
single database row may have little effect on the value of the function, even if
the worst case difference is large.

Given any database D, we would like to generate noise according to the local
sensitivity of f at D. Local sensitivity is itself a legitimate query (“What is
the local sensitivity of the database with respect to the function f?”). If, for
a fixed f , the local sensitivity varies wildly with the database, then to ensure
differential privacy the local sensitivity must not be revealed too precisely. On
the other hand, if the curator simply adds noise to f(D) according to the local
sensitivity of f at D, then a user may ask the query f several times in an attempt
to guage the local sensitivity, which we have just argued cannot necessarily be
safely learned with great accuracy. To prevent this, we need a way of smoothing
the change in magnitude of noise used so that on locally insensitive instances
that are sufficiently far from highly sensitive ones the noise is small. This is the
subject of recent work of Nissim, Raskhodnikova, and Smith [33].

In some tasks, the addition of noise makes no sense. For example, the function
f might map databases to strings, strategies, or trees. McSherry and Talwar ad-
dress the problem of optimizing the output of such a function while preserving
ε-differential privacy [31]. Assume the curator holds a database X and the goal is
to produce an object y. In a nutshell, their exponential mechanism works as fol-
lows. There is assumed to be a utility function u(X,y) that measures the quality of
an output y, given that the database is X . For example, if the database holds the
valuations that individuals assign a digital good during an auction, u(X, y) might
be the revenue, with these valuations, when the price is set to y. The McSherry-
Talwar mechanism outputs y with probability proportional to exp(u(X, y)ε) and
ensures ε-differential privacy. Capturing the intuition, first suggested by Jason
Hartline, that privacy seems to correspond to truthfulness, the McSherry and
Talwar mechanism yields approximately-truthful auctions with nearly optimal
selling price. Roughly speaking, this says that a participant cannot dramatically
reduce the price he pays by lying about his valuation. Interestingly, McSherry
and Talwar note that one can use the simple composition of differential pri-
vacy, much as was indicated in Remark 2 above for obtaining privacy for groups
of c individuals, to obtain auctions in which no cooperating group of c agents
can significantly increase their utility by submitting bids other than their true
valuations.

Limitations. As we have seen, the magnitude of the noise generated by K
increases with the number of questions. A line of research initiated by Dinur
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and Nissim indicates that this increase is inherent [14]. They showed that if the
database is a vector x of n bits and the curator provides relatively accurate
(within o(

√
n)) answers to n log2 n random subset sum queries, then by using

linear programming the adversary can reconstruct a database x′ agreeing with x
in all but o(n) entries, ie, satisfying support(x − x′) ∈ o(n). We call this blatant
non-privacy. This result was later strengthened by Yekhanin, who showed that
if the attacker asks the n Fourier queries (with entries ±1; the true answer to
query vector y is the inner product 〈x, y〉) and the noise is always o(

√
n), then

the system is blatantly non-private [44].
Additional strengthenings of these results were obtained by Dwork, Mscherry,

and Talwar [18]. They considered the case in which the curator can sometimes
answer completely arbitrarily. When the queries are vectors of standard normals
and again the true answer is the inner product of the database and the query
vector, they found a sharp threshold ρ∗ ≈ 0.239 so that if the curator replies
completely arbitrarily on a ρ < ρ∗ fraction of the queries, but is confined to
o(
√

n) error on the remaining queries, then again the system is blatantly non-
private even against only O(n) queries. Similar, but slightly less strong results
are obtained for ±1 query vectors.

These are not just interesting mathematical exercises. While at first blush
simplistic, the Dinur-Nissim setting is in fact sufficiently rich to capture many
natural questions. For example, the rows of the database may be quite complex,
but the adversary/user may know enough information about an individual in the
database to uniquely identify his row. In this case the goal is to prevent any single
additional bit of information to be learned from the database. (In fact, careful
use of hash functions can handle the “row-naming problem” even if the adversary
does not know enough to uniquely identify individuals at the time of the attack,
possibly at the cost of a modest increase in the number of queries.) Thus we can
imagine a scenario in which an adversary reconstructs a close approximation
to the database, where each row is identified with a set of hash values, and a
“secret bit” is learned for many rows. At a later time the adversary may learn
enough about an individual in the database to deduce sufficiently many of the
hash values of her record to identify the row corresponding to the individual,
and so obtain her “secret bit.” Thus, naming a set of rows to specify a query is
not just a theoretical possibility, and the assumption of only a single sensitive
attribute per user still yields meaningful results.

Research statisticians like to “look at the data.” Indeed, conversations with
experts in this field frequently involve pleas for a “noisy table” that will permit
highly accurate answers to be derived for computations that are not specified
at the outset. For these people the implications of the Dinur-Nissim results are
particularly significant: no “noisy table” can provide very accurate answers to
too many questions; otherwise the table could be used to simulate the interactive
mechanism, and a Dinur-Nissim style attack could be mounted against the table.
Even worse, while in the interactive setting the noise can be adapted to the
queries, in the non-interactive setting the curator does not have this freedom to
aid in protecting privacy.
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5 Conclusions and Open Questions

We have surveyed a body of work addressing the problem known variously as
statistical disclosure control, privacy-preserving datamining, and private data
analysis. The concept of ε-differential privacy was motivated and defined, and a
specific technique for achieving ε-differential privacy was described. This last in-
volves calibrating the noise added to the true answers according to the sensitivity
of the query sequence and to a publicly chosen parameter ε.

Of course, statistical databases are a very small part of the overall problem of
defining and ensuring privacy. How can we sensibly address privacy in settings
in which the boundary between “inside” and “outside” is completely porous, for
example, in outsourcing of confidential data for processing, bug reporting, and
managing cookies? What is the right notion of privacy in a social network (and
what are the questions of interest in the study of such networks)?

We believe the notion of differential privacy may be helpful in approaching
these problems.
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Abstract. Emerging business models require organizations to collabo-
rate with each other. This collaboration is usually in the form of distri-
buted clustering to find optimal customer targets for effective marketing.
This process is hampered by two problems (1) Inability of traditional clus-
tering algorithm in finding local (subspace) patterns in distributed data
and (2) Privacy policies of individual organizations limiting the process
of information sharing. In this paper, we propose an efficient privacy pre-
serving biclustering algorithm on horizontally partitioned data, referred to
as Phoenix, which solves both of these problems. It assumes a malicious
adversary model which is more practical than commonly employed semi-
honest adversary model. It is shown to outperform traditional K-means
clustering algorithm in identifying local patterns. The distributed secure
implementation of the algorithm is evaluated to be very efficient both in
computation and communication requirements.

1 Introduction

Emerging business models require organizations to collaborate with each other
in order to meet customer requirements effectively. These collaborations are
mostly in the form of Distributed Data Clustering (DDC). DDC is used to find
optimal customer targets for effective marketing and to build customer profiles
for customized services. Information sharing among organizations improves the
accuracy of cluster models. For example it will be hard for an organization
to build effective customer profiles based just on the customer data available
at its own sites. However, if organizations in the same market decide to share
their customer data then relatively accurate customer profiles can be built. For
instance online retailers may share their shoppers’ information with each other
so that customized recommendations can be served whenever a shopper moves
from one site to the other.

Data partitioning for collaborative data analysis has been studied from two an-
gles (1) Horizontal Partitioning where each site has the same attributes(features)
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but different objects and (2) Vertical Partitioning where each site has same ob-
jects but their attributes are distributed across all sites. In this paper, we will
limit ourselves to horizontal partitioning only.

Despite above mentioned benefits, clustering on data partitioned across ad-
ministrative boundaries suffers from following drawbacks.

1. Clustering techniques are only good at finding global patterns. Note that
clustering is achieved by maximizing the similarity within a class and min-
imizing the similarity across classes. The similarity criterion is based on
some distance function computed over all attributes. This similarity com-
parison based on the entire set(space) of attributes tends to overlook local
patterns where different objects are similar based on only a subset(subspace)
of attributes. For example, two customers who have similar music taste but
different taste in food and clothes would most likely be treated as belonging
to different clusters under traditional clustering techniques. The fact that
these customers have similar music taste is a local pattern which can’t be
identified by these techniques.

2. The second challenge is that information sharing across administrative
boundaries poses a serious threat to individuals’ privacy. In order to satisfy
customer requirements and to comply with government regulations, most
organizations have to devise privacy policies which strongly prohibit infor-
mation sharing with other organizations. Under these policies, organizations
share their raw data under Non-disclosure agreements and clustering is per-
formed in a centralized warehouse model. Like other researchers [1, 2], we
believe centralized warehouse model is limited in scope because of its inher-
ent lack of scalability and associated costs. Therefore distributed clustering
solutions are required which could also provide sufficient guarantees for the
preservation of the privacy of the data.

Contributions

This paper is aimed at solving the above mentioned problems for those applica-
tions which require identification of local patterns from horizontally partitioned
data in a privacy preserving manner. Our proposed solution, which is referred
to as Phoenix, makes following contributions to this end.

Local Pattern Discovery through Biclustering. Identification of local
(subspace) patterns is achieved through Biclustering. Biclustering is a technique
which is capable of finding local patterns where a subset of objects(records)
might be similar to each other based on only a subset of attributes. Biclusters
and clusters are illustrated in Figure 1 for comparison. As is shown in the figure,
biclusters can just cover part of rows or columns and may overlap with each
other. We employ a bigraph crossing minimization based biclustering algorithm,
namely cHawk, which was proposed in [3]. The input data is viewed as adjacency
matrix and barycenter heuristic [4] is employed for crossing minimization. This
algorithm is not only capable of finding local patterns with high accuracy and
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Cluster1

Cluster2

(a) Clusters of Objects.

Bicluster1

Bicluster3

Bicluster2

Overlapping of
Bicluster1 and Bicluster2

(b) Biclusters of Objects

Fig. 1. Illustration of Clusters and Biclusters for Comparative Analysis

efficiency, it is also easily amenable to bandwidth and communication efficient
secure implementation for privacy preserving biclustering.

Secure Aggregation in Malicious Adversary Model. We show that the
proposed crossing minimization based Biclustering algorithm requires only a se-
cure aggregation protocol and a secure Euclidean Distance function for a privacy
preserving implementation. We provide these protocols under Secure Multiparty
Computation setting. The secure aggregation protocol is based on the framework
that we proposed in [5]. The salient features of this protocol are (1) Threshold
Additively homomorphic cryptosystem with distributed key generation which
eliminates the requirement of a trusted dealer, (2) Zero knowledge proofs to
determine if the protocol was executed honestly and (3) a scalable hierarchical
communication framework which is resilient to network failures. The proposed
secure aggregation protocol has good communication complexity and requires
only O(logN ) rounds to provide a stable solution where N is the number of
participants. This protocol is constructed for a malicious adversary model which
assumes that participants may not follow the protocol honestly. Moreover pro-
tocol also caters for collusion whereby multiple malicious participants may col-
laborate against honest users. The only restriction is that number of colluding
participants should not exceed the honest ones.

Many approaches have been proposed recently to provide privacy preserving
distributed clustering solutions [6,7,8]. Even though biclustering has been shown
to be very useful in fine-grained pattern discovery [3, 9], there has been surpris-
ingly little focus on providing distributed privacy preserving solutions to this
problem. To our knowledge, privacy preserving distributed biclustering is being
discussed for the first time in this paper.

Rest of the paper is organized as follows. Related research work is presented
in Section 2. Proposed approach for privacy preserving biclustering, Phoenix, is
presented in Section 3. Complexity analysis of Phoenix is carried out in Section 4.
Experimental evaluation is presented in Section 5 and conclusions are drawn in
Section 6.
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2 Related Work

Privacy issues in statistical databases have been discussed comprehensively in
[10, 11]. Recently privacy preserving data mining has become a very active area
of research. Early solutions were proposed for privacy preserving decision tree
construction [12, 13]. Privacy preserving solutions for association rule mining
were proposed in [14,15]. We will limit our focus on privacy preserving clustering
solutions along with generic biclustering algorithms.

2.1 Privacy Preserving Clustering

There have been several solutions proposed for privacy preserving clustering
problem. The main theme behind such solutions is the processing of the private
data such that privacy is not compromised while accuracy of the cluster models
remains as high as possible. There are two threads of research in this regard
i.e. (1) Statistical Processing based approaches [16, 17] and (2) Cryptographic
Secure Multiparty Computations(SMC) based approaches [15, 2, 8].

Statistical Processing Approaches can be categorized into model based clus-
tering and clustering over randomized data.

1. Model based approaches [16] for privacy sensitive distributed clustering in-
volve building cluster models at local sites and then transmitting them to a
central server. A global model is then built which is an aggregate function
of the local models.

2. Random Perturbation schemes [17] try to preserve user data by adding ran-
dom noise to it while attempting to make sure that the necessary statistical
aggregates such as mean don’t get disturbed much. These protocols involve
a privacy accuracy tradeoff and are not suitable for distributed privacy pre-
serving clustering.

Secure Multiparty Computation (SMC) based approaches [2, 15, 8] employ
cryptographic protocols which provide guarantees that each party would not
learn more than the aggregate cluster models and its own personal data. SMC
protocols essentially allow computations over encrypted data so that initial data
sets and intermediate results are hidden from all participants. Only when the
computations are complete, participants engage in a distributed protocol to de-
crypt the aggregated model.

Privacy preserving k−means clustering solutions were proposed in vertically
partitioned data in [2] and in horizontally partitioned data in [7]. Moreover, a
privacy preserving clustering solution based on EM (Expectation Maximization)
mixture models was proposed in [6]. These solutions were proposed under the
assumption of a semi-honest adversary model whereby participants are assumed
to follow the protocol honestly. This assumption is not valid in many real life set-
tings among mutually un-trusted participants. Moreover, the secure aggregation
framework of [6] is based on a ring based synchronous communication frame-
work which is unsuitable for large scale collaborations. The secure permutation
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algorithm of [2] is required to be executed for every item in the data set which
makes it unscalable for large data sets. Another problem with these approaches,
as mentioned above, is that clustering algorithms are unsuitable for discovery of
local patterns which is the subject of this paper.

2.2 Biclustering

Biclustering has been shown to effectively discover local(sub-space) patterns in
biological data sets [9,3], in text mining [18] and in collaborative filtering [19,20].

In our previous work, referred to as cHawk [3], we presented a biclustering
algorithm which was based on bigraph crossing minimization. Salient features of
the algorithm are as follows.

– We provided a theoretical connection between spectral partitioning and
crossing minimization of a bipartite graph. Using this connection, a Biclus-
tering Model based on Crossing minimization was proposed.

– An efficient implementation of the proposed model, termed as cHawk, was
provided. The input data is viewed as adjacency matrix and barycenter
heuristic [4] is used for solving the crossing minimization problem efficiently.
Convergence of this heuristic was theoretically and experimentally proved
in [4, 21]. We note that crossing minimization reorders the vertices on both
layers of the bipartite graph such that vertices belonging to the same biclus-
ter are brought into the vicinity of each other. This essentially reduces the
bicluster identification problem from a global search to local search. Asymp-
totic complexity of barycenter heuristic is only O(|E| + |V |log|V |) where E
is the set of edges and V is the set of vertices in the input graph.

– An efficient algorithm for bicluster identification was proposed. This algo-
rithm employs local search and is capable of finding constant, coherent and
overlapped biclusters amid noise. The underlying similarity test is based on
Bregman Divergence [22]. Bregman Divergence is defined as follows [22].

If f is a strictly convex real-valued function, the f -entropy of a discrete
measure p(x) ≥ 0 is defined by Hf (p) = −∑

x(f(p(x)) and the Bregman
divergence Bf (p; q) is given as

Bf (p; q) = −
∑

x

f(p(x)) − f(q(x)) −∇f(q(x))(p(x) − q(x)) (1)

When f(x) = x log x, Hf is the Shannon entropy and Bf (p; q) is the I-
divergence, when f(x) = − log(x) we get the Burg entropy and discrete
Itakura-Saito distortion

Bf (p; q) =
∑

x

(log
q(x)
f(x)

+
p(x)
q(x)

− 1)

Detailed comparison of cHawk with other biclustering approaches along with
its implementation and evaluation is presented in [3].
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3 Privacy Preserving Biclustering

Another advantage of crossing minimization based biclustering approach, apart
from its efficiency, is that it is easily amenable to distributed secure implemen-
tations. For distributed implementation of the algorithm, we need to develop
distributed versions of crossing minimization and bicluster identification algo-
rithms. As we show in the coming sections, the distributed implementations are
communication efficient which lead to efficient secure implementations as well.

3.1 Model for Distributed Biclustering

We assume that data is horizontally partitioned across a set S : {s1 . . . sN } of N
Servers such that each server si has the same set A : {a1 . . . aL} of L attributes
and a set Ri : {ri1 . . . riMi} of Mi different objects(records) such that global
object set R can be represented as R =

⋃
∀i∈S Ri.

Distributed Crossing Minimization. Each server can build bigraph on its
local data such that objects are represented by nodes on one layer (say Layer0
nodes) and the attributes are represented by nodes on the other layer (Layer1).
It would then perform crossing minimization on the Bigraph. The crossing mini-
mization procedure requires iterative computation of the ranks of object vertices
and the attribute vertices which are represented by two layers of the bigraph.
This procedure starts by initializing ranks of vertices in one layer to random val-
ues. The rank for each vertex on the other layer of the bigraph is then calculated
as a function of ranks of its neighbors on the first layer. In case of barycenter
heuristic [3], this function is a weighted mean (μ) of the ranks of neighbors. The
procedure terminates when there is no further change in the vertex ranks.

Let vj represent the j’th object node in Layer0 and set Nj represent the set of
attribute nodes connected to vj . Also let ri represent the rank of i’th member of
the set Nj. Then the weighted mean μj which represents the rank of j’th object
node is given in Equation 2.

μj =

∑
i∈Nj

wi,j × ri
∑

i∈Nj
wi,j

(2)

Since we assume horizontal partitioning, each object node in the bigraph built
over local data will have all necessary information (i.e. Ranks of its neighbor
attribute nodes) to calculate its rank locally using Equation 2. This implies that
no inter-server communication is required for calculating the ranks of objects
at each server. On the other hand since attribute nodes are connected to object
nodes which might be separated across different servers, we will have to engage in
inter-server communication for exact computation of the ranks of these attribute
nodes. Each server i shares its local value of μij for j’th attribute to all other
servers and then global weighted mean is calculated. This global weighted mean
μ

(j)
G for an attribute aj ∈ A is simply the mean of all μij values over n servers.



20 W. Ahmad and A. Khokhar

μ
(j)
G =

∑
1≤i≤n μij

n

The global weighted mean for an attribute node is the same over all servers
and thus results in assignments of the same unique rank to each attribute node
over all servers.

Distributed Bicluster Identification. By the end of the above mentioned
distributed crossing minimization algorithm, each server will have a reordered
representation of its local data. Since ranks of object nodes are calculated locally,
each server does not know the global rank of its object nodes. Global rank of
object nodes is useful only if each server knows the ranks of objects on other
servers too. This is because of the fact that bicluster identification procedure
works on contiguously ranked object nodes. It will have to be implemented in a
distributed setting by having a hash table so that each server si can lookup the
table to determine the set of servers Slookup which have object nodes adjacent
to its own object node. The server si would then engage in distributed bicluster
identification procedure in collaboration with those servers which belong to the
set Slookup. There are two problems with this approach which are listed below.

1. It would result in tremendous increase in communication overhead. Firstly,
all servers will have to engage in all-to-all broadcast of local ranks of each
object node so as to assign unique global rank to each object node at each
server. This is also required for building the required look up table. Given
the large number of object nodes, the communication cost for this process
would be prohibitively high. Secondly, during the bicluster identification
process each server will have to engage in distributed bicluster identification
with other servers belonging to the set Slookup. This would require bicluster
identification procedure to be performed in a synchronized manner at each
server. Given the fact that these servers will be communicating on internet
speeds and are distributed geographically, synchronization requirement will
be impractical for most practical applications.

2. If each server knows the global rank of objects on other servers, it would
amount to serious privacy breaches during the bicluster identification stage.
Since crossing minimization step assigns similar global ranks to similar ob-
jects, knowing the global rank of objects on other servers is equivalent to
knowing their similarity with local object nodes. This in itself reveals the
attribute values of those objects as these values ought to be similar to the
values of local objects with similar global ranks.

The solution to above mentioned problems is to employ a simple approach
whereby object ranks are computed locally at each server and then bicluster
identification process is performed locally as well. Once each server has identified
its local biclusters, it broadcasts representatives of these biclusters to all other
servers. A bicluster representative is a vector consisting of the mean of each
attribute in the bicluster. Upon receiving the bicluster representatives from other
servers, each server determines through Euclidean distance if its local biclusters
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can be combined with those from other servers. In case it finds strong similarity
between one of its biclusters and incoming bicluster representatives. It updates
the local bicluster representative for that bicluster such that the attribute means
now reflect the global attribute means for the bicluster.

3.2 Model for Distributed Privacy Preserving Biclustering

Before we discuss the privacy issues with the above mentioned distributed im-
plementation of the crossing minimization based biclustering approach, we first
outline the assumed adversarial model.

Adversarial Model. We assume that the adversary can corrupt up to t ≤ n
2

servers and corrupted servers can collude as well. The computational power of
the adversary is modeled by a probabilistic polynomial time Turing machine.
Moreover, the adversary is assumed to be static i.e. it chooses the corrupted
servers at the beginning of the protocol. We also assume that the servers un-
der adversarial control can be malicious i.e. they may not follow the protocol
properly. This malicious adversary model is more realistic in real life applica-
tions as opposed to semi-honest model where adversary is supposed to follow
the protocol.

Privacy Issues with Distributed Biclustering. We discussed distributed
implementation of crossing minimization based biclustering approach in a previ-
ous section. Here we outline the privacy issues with this distributed implemen-
tation. These privacy issues are listed as follows.

1. The distributed implementation of the crossing minimization procedure re-
quires each server to share its local rank for each attribute with other servers.
Since rank of each attribute node is computed as a weighted mean of the
ranks of the neighbor object nodes, it leaks information regarding edge
weights which are actual matrix values.

Given the fact that each server has the same rank for each attribute and
all servers share the same set of Attributes A, knowing the weighted mean
of attribute ranks enables the adversary to guess about edge weights used in
calculating the mean. For example, if an object node has a weighted mean
μ. An adversary can attack the edge weights as follows. Lets assume there
are two attribute nodes with ranks r1 and r2. This information is available
to adversary. The only unknown information is edge weights x1 and x2. So
according to Equation 2.

r1 × x1 + r2 × x2

x1 + x2
= μ

Now if r1 happens to be 0, then we are left with

r2 × x2

x1 + x2
= μ
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Since r2 is known to adversary and the edge weights are usually taken from
a finite discrete space, the adversary can determine values of x1 and x2
efficiently even by a brute force attack.

2. Another problem emerges when bicluster representatives are broadcasted to
all other servers for possible merging of the bicluster. Bicluster represen-
tatives are only means of attribute values in the bicluster. For small sized
biclusters, mean of the attribute value is exposed to privacy attack men-
tioned above.

In the wake of above mentioned problems, we need to provide secure primi-
tives using which all servers can calculate the global means for attribute nodes
securely. Also required is a way to merge distributed biclusters over different
servers securely.

Closer inspection of the first problem reveals that we need a mechanism by
which all servers can engage in a secure aggregation protocol which makes sure
that no server learns more than the aggregate global mean value and its own
value at the end of the protocol. Clearly this can be achieved through secure
multiparty computation protocols. We proposed a scalable secure aggregation
protocol in [5] which is based on a threshold homomorphic cryptosystem de-
scribed in Section 3.3. It has all desired properties to cater for adversarial model
stated above. Salient features of this homomorphic cryptosystem are as follows.

1. Homomorphic property to ensure secure multiparty computation (See Sec-
tion 3.3 for details).

2. Distributed key Generation to eliminate the requirement of trusted dealer.
3. Threshold decryption to cater for the colluding nodes.
4. Use of the zero knowledge proofs to determine if a specific server has com-

pletely followed the protocol or not.

For the problem of determining bicluster similarity securely, we allow broad-
cast of bicluster representatives in an encrypted form. Secure Euclidean distance
protocol of [23] is then used to allow merging of similar biclusters.

In the next section we outline the construction of above mentioned thresh-
old homomorphic cryptosystem. We will then use this cryptosystem to perform
secure aggregation of the μ values for calculating the global mean thus realiz-
ing the crossing minimization securely. The secure bicluster identification and
merging procedure will be detailed in Section 3.6.

3.3 Threshold Additively Homomorphic Cryptosystem

Salient features of the proposed additively homomorphic cryptosystem were de-
scribed in the previous section. An additively homomorphic cryptosystem has the
nice property that for two plain text messagesm1 and m2, it holds E(m1)∗E(m2)=
E(m1 + m2). This essentially means that we can have the sum of two numbers
without knowing what those numbers were. The concept of threshold cryptogra-
phy allows us to distribute shares of the private key among the set of servers such
that until t of them collaborate, ciphertext can’t be decrypted.

Construction of different features of the cryptosystem is outlined below.
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Distributed Key Generation. Let there be N servers (S1, . . . , SN ). We em-
ploy Distributed Key Generation protocol of Malkin et al [24] in our implemen-
tation. At the end of computation, an RSA modulus n = pq is publicly known.
All servers involved in the computation are convinced that the modulus is a
product of two primes but no one knows the factors of n. Moreover each server
is left with a private key share di generated using t-out-of-N sharing protocol
of [24]. For verification of the decryption protocol, we need the following fixed
public values: v which generates the cyclic group of squares in Z

∗
n2 and for each

decryption server a verification key vi = vΔdi mod (n2) where Δ = N !.

Encryption. Let m be a message to be encrypted where m ∈ Zn2 . A random
number r where r ∈ Z

∗
n is selected. Ciphertext c is computed as: c = (n+1)mrn2

mod n2.

Share Decryption. The i’th server will compute ci = c2Δdi , Along with this
will be a zero knowledge proof as that logc4(c2

i ) = logv(vi) which will convince
other servers that it has indeed raised c to his secret exponent di.

Share Combining. If each server has number of verified shares ≥ t+1, then it
can combine them into the result by following Jurik et al’s scheme of [25] which
combines subset S of shares of honest nodes as follows.

c′ =
∏

i∈S

c
2λS

0,i

i

where
λS

0,i = Δ
∏

j∈Sı

−j

i − j
∈ Z

The message m can be obtained from c′ by applying the discrete log algorithm
of [25].

Homomorphic Property of the Cryptosystem. To show that the cryp-
tosystem is additively homomorphic, consider two messages m1 and m2 which
are encrypted using the same public key pk such that c1 = E(pk)(m1, r1) and
c2 = E(pk)(m2, r2) then c1c2 = gm1gm2rn2

1 rn2

2 = gm1+m2rn2
where r = (r1r2) ∈

Z
∗
n so c1c2 = E(pk)(m1 + m2, r)

3.4 Scalable Communication Framework

Our secure aggregation framework [5] employs the self-stabilizing hierarchical
communication algorithm of [26]. The algorithm assumes unique identifiers given
to each Server. The Server with the minimum identifier plays the role of the root
in the spanning tree. In this algorithm nodes(servers) which are part of some
spanning tree expect to receive ”power” from the root of the tree where ”power”
refers to continuous flow of certain messages one per round. The basic idea is
that only legal roots may be the source of the power and the fake roots are
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forced out to make a new tree. Whenever a node receives power from a node
with smaller identifier (than the one it is currently attached to), it attaches
itself to that node’s tree. In an asynchronous network, the power supply idea is
implemented using different types of messages. Nodes use periodic exchange of
”weak messages” to synchronize their state while ”strong” messages are used to
carry power. This algorithm is known to stabilize in O(N ) rounds without any
knowledge of N (total number of servers).

3.5 Secure Crossing Minimization

Now that we have defined the primitive to perform secure aggregation, we can re-
visit the crossing minimization procedure to implement it securely. As mentioned
previously, secure implementation of the crossing minimization only requires the
secure aggregation of the local values of the weighted means for each attribute
so as to calculate global mean for that attribute. This global mean is then used
to assign a unique rank to each attribute. Note that we don’t perform global
calculation of mean in case of object nodes for reasons discussed in previous
section. The secure distributed crossing minimization procedure is described in
Algorithm 1.

As shown in Algorithm 1, the secure aggregation is performed in Step 7
through Step 14. Basically each server encrypts its local weighted mean for
the attribute with public key PK using encryption function of Section 3.3 and
broadcasts to all other servers. Each server combines these encrypted values us-
ing procedure of Section 3.3. Each server then uses its share si of the secret
key to partially decrypt the encrypted value of the global key. These partial de-
cryptions are then broadcasted to all servers. Each server verifies these partial
decryptions using zero knowledge proof of Section 3.3 to determine if the proto-
col was honestly followed. If there are more than t honest servers, each server can
combine their shares to get the decrypted value of global mean. Note that zero
knowledge proof only makes sure that the protocol was honestly followed i.e. the
server used its local share si to perform partial decryption. It does not secure
against wrong values of the local means which are sent according to the protocol.
To protect against such attacks, Wagner’s resilient aggregation protocol [27] can
be employed.

3.6 Secure Merging of Biclusters

Once the crossing minimization step is performed, each server performs bicluster
identification procedure [3]. A set of biclusters are thus obtained which don’t
represent the global biclusters. Note that there is no predefined restriction on
the number of biclusters. The bicluster identification procedure identifies each
bicluster with dissimilarity score less than δ and number of rows and columns
more than their respective threshold values.

To obtain the global bicluster model, each server builds a bicluster repre-
sentative of each of its local biclusters. The bicluster representative is just a
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Algorithm 1. Secure Distributed Crossing Minimization
Require: Bigraph BG, Public Key PK, Share of the private key Si

Ensure: An embedding of BG (new ordering of the nodes in the two layers) which
results in minimal number of crossings for BG.

1: positionChanged ⇐ 1
2: DynamicLayer ⇐ 1
3: while PositionChanged �= 0 do
4: PositionChanged = 0
5: for all i such that Nodei belongs to the nodes in the Dynamic Layer do
6: Compute Weighted mean for Nodei using Equation 2
7: if DynamicLayer represents the attribute nodes then
8: Use encryption function of the cryptosystem from Section 3.3 to encrypt

local values of weight mean
9: Broadcast encrypted values of the weighted mean to all other servers

10: Perform the Homomorphic combine operation of Section 3.3 to obtain an
ecnrypted version of the global mean.

11: Use Share Decryption protocol of Section 3.3 to determine the shares of the
honest nodes.

12: Use share combine protocol of Section 3.3 to combine shares of the honest
nodes to achieve decrypted global mean value μG for the attribute node

13: WeightedMean = μG

14: end if
15: if Nodei.Rank �= WeightedMean then
16: Nodei.Rank = WeightedMean
17: PositionChanged = PositionChanged + 1
18: end if
19: end for
20: Sort all the nodes in Dynamic Layer
21: Now adjust node ranks such that each node has a unique rank
22: DynamicLayer = (1 − DynamicLayer)
23: end while

mean of each attribute value in the bicluster over all objects which are members
of the bicluster. Since biclusters are merged using a similarity score calculated
through Euclidean distance, we follow the scheme of [23] to compute it securely.
According to the scheme, the mean value vai of each attribute ai is represented as
v2

ai,−2 × vai,−1. This representation is broadcasted to all servers. Each server
represents mean mai of each attribute ai in its local bicluster as 1, mai, m

2
ai.

The dot product of these components will then be v2
ai − 2 × vai × mai − m2

ai =
(vai−mai)2. We can extend this idea to the entire set A : {a1 . . . al} of attributes
as follows.

∑

i

(vai − mai)2 =

(
∑

i

v2
ai,−2 × va1, . . . , val, 1).(1, ma1, . . . , mal,−

∑

i

m2
ai)
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The only challenge now is to compute this dot product securely. For this pur-
pose we can use the secure scalar product protocol of [23]. Each server determines
the similarity of each of its local biclusters with received bicluster representa-
tives from other servers by virtue of above mentioned secure Euclidean distance
function. If two biclusters have similarity score more than a threshold value β,
these biclusters are merged by virtue of an update of their representatives. The
new bicluster representative will have values which are means of the values of
the two similar biclusters. Thus we calculate the global bicluster representative
securely.

4 Complexity Analysis of Phoenix

4.1 Computation Complexity

Key generation protocol would require selecting random numbers and perform-
ing primality tests till required conditions are met. In a naive implementation,
O(n2) probes might be required till a suitable value of n (RSA modulus) is
found. Practical considerations for efficient implementation of distributed key
generation process are outlined in [24]. Their proposed method of distributed
sieving considerably improves the efficiency of the key generation process.

Lets assume that | R |= NR̄ denotes the total number of rows (objects) of the
input data matrix where N is the total number of servers and R̄ is the average
number of rows at each server. Also | A |= m total number of columns of the
input matrix and R̄ci = average number of rows per bicluster at server Si. Also
Āci = average number of columns per bicluster and ki = number of biclusters at
server Si and I = average number of iterations of crossing minimization process.
Now O(R̄) = time to compute weighted means at each server, O(m) = time
to perform encryption and decryption of attribute ranks during every second
iteration and O(R̄ log R̄) = time to perform sorting based on means and O(R̄) =
time taken in adjusting node positions.

Also O(kiĀciR̄ci) = time to identify biclusters (when there is no overlap).
In case of overlapped biclusters, the bicluster identification process would take
O(dkiĀciR̄ci) where d is the average degree of overlap among biclusters. Com-
putation of bicluster representatives and encrypting them at Server Si would
require time in O(R̄ciĀci). Comparing the received b bicluster representatives
with local biclusters would yield computation cost of O(bki).

Given the fact that number of iterations are usually very small (I was never
more than 5 in our experimental evaluation), the computation cost is usually
bounded by O(dkiĀciR̄ci) which is linear with the size of the local matrix as
long as degree of overlap d remains constant.

4.2 Communication Overhead

Using the scalable communication framework, distributed Key generation pro-
cess requires O(P logN ) communication rounds where N is the total number of
servers and P is the total number of probes.
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The distributed crossing minimization process is very communication effi-
cient. Messages are exchanged only while updating the ranks of attribute nodes.
O(Im logN ) messages rounds are required during crossing minimization where
length of each message is equivalent to the number of bits of RSA modulus
(512 − 1024 bits for most applications). O(m logN ) message rounds would be
required for share combining and decryption over all iterations of the crossing
minimization process. It should be noted that communication cost for the dis-
tributed crossing minimization process is independent of the number of rows
of the input matrix. On the other hand, most privacy preserving data mining
algorithms incur a communication cost which is quadratic with the number of
rows of the input matrix. Communication cost of the proposed framework scales
linearly with the number of columns (attributes) and servers. This makes cross-
ing minimization based biclustering algorithm a method of choice for scalable
distributed implementations.

Broadcasting encrypted bicluster representatives would require O(kiĀciN )
message communications where each message is the size of RSA modulus.
Clearly, overall communication cost scales linearly with the number of servers
and attributes because the number of biclusters ki at each server are assu-
med constant. This implies suitability of the proposed framework for large scale
networks.

5 Experimental Framework

5.1 Experimental Setup

The proposed biclustering algorithm is implemented in C++. The cryptographic
primitives are implemented using GNU MP Bignum Library. We used Message
Passing Interface (MPI) for distributed memory implementation of the algorithm
to mimic a distributed reliable network of servers. The algorithm’s accuracy and
performance was determined using synthetically generated data sets of large
sizes. The experiments were performed on 10-Node Linux Cluster connected
by Myrinet fast speed network. Each node in the cluster consists of a 0.8 GHz
AMD Athlon processor with 512 MB RAM. MPICH-G2 1.2.4 is used to program
our algorithm. The operating system is Gentoo Linux 2.6.9-r9 and compiler is
the GNU gcc 3.3.6. In all the experiments the execution time was obtained
through MPI Wtime() and is reported in seconds. The execution time takes into
account the time spent in reading data from Files in the process of initializing
the structure.

5.2 Accuracy Evaluation

Our first set of experiments is aimed at comparing the accuracy of the non-secure
crossing minimization based biclustering algorithm against non-secure K-means
clustering algorithm. Both of these algorithms were run on a single processor
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(a) Accuracy Comparison between Phoenix and K-
means.
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Fig. 2. Accuracy Evaluation for Phoenix

with centralized data. To evaluate the accuracies of these algorithms, we use the
measure (match score) similar to the score proposed by Prelic et al. [28] and Liu
et al [29].

Let M1, M2 be two sets of bi-clusters. The match score of M1 with respect
to M2 is given by

S(M1, M2) =
1

| M1 |
∑

A(I1,J1)∈M1

maxA(I2,J2)∈M2

| I1 ∩ I2 || J1 ∩ J2 |
| I1 ∪ I2 || J1 ∪ J2 |
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Let Mopt denote the set of implanted bi-clusters and M the set of the output
bi-clusters of a (bi)clustering algorithm. S(Mopt, M) represents how well each
of the true bi-clusters is discovered by the algorithm.

We follow the approach used by Liu et al. [29] for synthetic data generation.
To cater for the missing values in real life data, we add noise by replacing some
elements in the matrix with random values. There are three variables b, c and
γ in the generation of the bi-clusters. b and c are used to control the size of
the implanted bi-cluster. γ is the noise level of the bi-cluster. The matrix with
implanted constant bi-clusters is generated with four steps: (1) generate a 100×
100 matrix A such that all elements of A are 0s, (2) generate ten 10×10 bi-clusters
such that all elements of the bicluster are 1s, (3) implant the ten bi-clusters into
A, (4) replace γ(100× 100) elements of the matrix with random noise values (0
or 1) .

Table 1. Parameter Settings for Phoenix and K-means

Method Parameter Settings
Phoenix δ = 0.5, Iterations = 5,Function=KL-Divergence
K-means K = 10

In the experiment, the noise level ranges from 0 to 0.25. The parameter set-
tings used for the two methods are listed in Table 1. The results are shown in
Figure 2(a). In the absence of noise, Phoenix can always find the implanted bi-
clusters correctly. K-means algorithm significantly under performs as it misses
many biclusters because of its inability to find local patterns. When the noise
level is high, accuracy of Phoenix remains consistent throughout. Accuracy of
K-means algorithm deteriorates with increase in noise. This lack of accuracy is
due to its inability to disregard similarity between different objects based on
noise.

Accuracy Loss due to Distributed Privacy Preserving Biclustering.
Our second set of experiments are aimed at determining the effects of distributed
privacy preserving primitives on the accuracy of the biclustering process. The
resulting graph is shown in Figure 2(b). The graph illustrates the accuracy com-
parison between centralized crossing minimization based biclustering algorithm
without security primitives (cHawk) [3] with Distributed Privacy Preserving Bi-
clustering using Crossing Minimization (Phoenix). The graph shows that at zero
noise, Phoenix is almost as accurate as cHawk. With increase in noise the ac-
curacy degrades a little bit which is because of non-exact nature of bicluster
comparison and merge operations of Phoenix. Note however that the accuracy
of Phoenix remain considerably high even though it is a distributed implemen-
tation which uses a simple biclustering merge framework.

Performance Evaluation of Proposed Algorithm. Our second set of ex-
periments were aimed at analyzing the performance in terms of execution times
for Phoenix. For this purpose the algorithm was run on synthetic data sets with
sizes ranging from 1000 (20 × 50) elements to 1000000 (20, 000 × 50) elements.
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The number of columns in each case were fixed to be 50. The number of servers
were fixed at four. We noted that increasing the number of servers did’nt have
much impact on the execution times as it remain bounded by the size of the
data.1

Figure 3 shows the performance in terms of execution time for varying set
of problem sizes. The times reported are in seconds and indicate the time in
performing the biclustering using crossing minimization. The curve in the graph
represents the increase in execution time by increasing the problem size. As can
be seen in the Figure 3, the time scales linearly with the increasing data sizes.
Note that the curve seems non-linear, reason being the non-uniform scaling on
the two axes. To clarify, we have attached the data table with the figure. For
example the time taken to process 1, 000 data elements is 2.8 seconds while the
same for 50, 000 data elements case is around 113 seconds. That implies that a
fifty times increase in the data size result in an almost similar increase in the the
biclustering time. Similar pattern can be observed on other data ranges. These
experimental results verify our theoretical complexity analysis.

Fig. 3. Performance of Proposed Algorithm with increasing data size

6 Conclusions and Future Work

We have proposed a privacy preserving biclustering algorithm which is very effi-
cient with respect to both computation and communication costs. This algorithm
is suitable for those applications which require determination of local(subspace)
patterns in horizontally partitioned data in privacy preserving manner. The pro-
posed approach provides security among colluding malicious adversaries while
also eliminating the requirement of trusted dealer. The algorithm is shown to

1 This is because of the very fast network that we used for our experiments. Experi-
mental evaluation over a realistic distributed network such as PlanetLab is a topic
of our future research.
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easily outperform a traditional K-means based clustering algorithm in finding
fine grained patterns from the data. It also retains its accuracy in distributed
setting among secure protocols for merging biclusters.

We are aiming at evaluating the proposed framework on a more practical net-
work such as PlanetLab. Moreover, secure versions of distance metrics other than
Euclidean distance are also being investigated. Because of the communication
efficiency of the proposed framework, we are also evaluating its use for applica-
tions such as privacy preserving collaborative filtering in ubiquitous computing
environments.
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Abstract. As more and more person-specific data like health informa-
tion becomes available, increasing attention is paid to confidentiality
and privacy protection. One proposed model of privacy protection is k-
Anonymity, where a dataset is k-anonymous if each record is identical to
at least (k-1) others in the dataset. Our goal is to minimize information
loss while transforming a collection of records to satisfy the k-Anonymity
model. The downside to current greedy anonymization algorithms is their
potential to get stuck at poor local optimums. In this paper, we propose
an Ordered Greed Framework for k-Anonymity. Using our framework,
designers can avoid the poor-local-optimum problem by adding stochas-
tic elements to their greedy algorithms. Our preliminary experimental
results indicate improvements in both runtime and solution quality. We
also discover a surprising result concerning at least two widely-accepted
greedy optimization algorithms in the literature. More specifically, for
anonymization algorithms that process datasets in column-wise order,
we show that a random column ordering can lead to significantly higher
quality solutions than orderings determined by known greedy heuristics.

1 Introduction

One of the most important promises a physician makes to a patient is that of
confidentiality. At the same time, there is a need to release patient information
for research and surveillance. Today in our growing digital society, guaranteeing
patient privacy while providing researchers with worthwhile data has become
increasingly difficult. For example, suppose it is desirable to make a public release
of the patient dataset in Figure 1 for clinical research or health surveillance. In
the past, it was believed that de-identification, i.e., removing obvious identifiers
like social security number and name, would be sufficient in the protection of
patient privacy. Recent studies, however, indicate that it is possible to re-identify
individuals, even if the data set is de-identified. A popular example can be found
in Sweeney [24], where the governor of Massachusetts was re-identified using
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publicly available medical records and a voter registry (six people shared his
birth date, three were male, and he was the only one in his 5-digit ZIP code).

One way to limit the risk of re-identification is to ensure that no information
is distinctive to a particular individual, thereby making everyone anonymous. k-
Anonymity [22,24] is a technique in which released records are made less specific,
yet remain truthful. Unfortunately, we know that the problem of guaranteeing
k-Anonymity is NP -hard [1, 19].

The solution to this privacy protection problem is currently in high-demand,
and since it is impossible for a software solution to produce an optimal solution
efficiently, researchers are concentrating on faster heuristic approaches that pro-
duce good sub-optimal results. Although this is a new research area, it appears
that genetic algorithms have already been dismissed as viable solutions due to
reports of lower accuracy and much higher runtime [4,7,26]. In our opinion, these
two issues can be addressed by appropriate techniques from genetic algorithms
research. In this paper, we propose a new framework that allows algorithm de-
signers to avoid the poor-local-optimum problem by adding stochastic elements
to their greedy algorithms. Unlike previous bit string genetic algorithms, this
framework is based on a permutation problem representation and a genetic al-
gorithm approach called ordered greed. We compare the runtime and solution
quality of our new framework to that of previous genetic algorithms and discover
a surprising result concerning at least two widely-accepted greedy optimization
algorithms in the literature. More specifically, given that anonymization algo-
rithms often process datasets in column-wise order, we show that a random
column ordering can significantly lead to higher quality solutions than orderings
determined by known greedy heuristics. We discuss our implementation of one
of these greedy optimization algorithms, Datafly [23], and compare its perfor-
mance as a stand-alone algorithm to its performance as a module inside our new
framework. As an added bonus, we complete nearly all the future work listed by
leading experimental researchers in this area [26]:

– avoiding getting stuck at poor local optimums
– handling data suppression
– local recoding (not necessary to generalize all identical data values together)
– generalizing numeric attributes without hierarchies

This paper is organized as follows. Section 2 provides overviews and describes
the previous work of the main themes of this paper: k-Anonymity and Ge-
netic Algorithms. Section 3 describes our new framework in detail, including an
overview, usage requirements, and how a greedy optimization algorithm, such
as Datafly [23], can be configured to work as a module inside our framework.
Section 4 describes specific implementation details for the Ordered Greed Frame-
work, Datafly, and a traditional genetic algorithm modeled after existing genetic
algorithms for k-Anonymity [8,17]. Section 4 also shows our quality and runtime
results. Section 5 provides insight into our results and Section 6 gives a brief
summary and suggests several directions for future research.
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2 Background

This section reviews the two major themes of this paper: k-Anonymity and
Genetic Algorithms. For both of these themes, we provide an overview describing
fundamental concepts and a discussion of previous work.

2.1 k-Anonymity

Recall from Section 1 that k-Anonymity is the privacy-protection property that
prohibits re-identification by making person-specific records less specific. Content
found in this section is from [6, Section 2.2] and as the purpose of this section is
to provide necessary background for understanding the framework in the next
section, what follows is not a complete treatment of k-Anonymity.

Given an n × m dataset D, such as the one depicted in Figure 1, let rows
represent people and columns represent a set A = {a1, a2, . . . , am} of human
attributes.1 A user-defined quasi-identifier, Q = {q1, q2, . . . , qh}, h ≤ m, specifies
which columns contain personal information, i.e., information that is common
enough to exist in other datasets, where linking can occur. The contents of the
other (m − h) columns make up private information, i.e., information that is
unique to this dataset, where linking cannot occur. For example, in Figure 1 the
contents of Problem are considered private information and the contents of all
other columns are considered personal information.

10

9

8

7

6

5

4

3

2

1

obesityUnited-
States

MaleWhiteExec-
managerial

Married-
civ-spouse

BachelorsPrivate42 

cancerUnited-
States

FemaleWhiteProf-
specialty

Never-
married

MastersPrivate31 

chest 
pain

United-
States

MaleWhiteExec-
managerial

Married-
civ-spouse

HS-gradSelf-emp-
not-inc

52 

fluJamaicaFemaleBlackOther-
service

Married-
spouse-abse

9thPrivate49  

obesityUnited-
States

FemaleWhiteExec-
managerial

Married-
civ-spouse

MastersPrivate37 

obesityCubaFemaleBlackProf-
specialty

Married-
civ-spouse

BachelorsPrivate28 

cancerUnited-
States

MaleBlackHandlers-
cleaners

Married-
civ-spouse

11thPrivate53  

fluUnited-
States

MaleWhiteHandlers-
cleaners

DivorcedHS-gradPrivate38 

chest 
pain

United-
States

MaleWhiteExec-
managerial

Married-
civ-spouse

BachelorsSelf-emp-
not-inc

50 

obesityUnited-
States

MaleWhiteAdm-
clerical

Never-
married

BachelorsState-gov39

ProblemNative
Country

SexRaceOccupationMarital
Status

EducationWork
Class

Age

Fig. 1. Patient Dataset

1 This is a partial dataset consisting of the first ten records of the Adult Database
from the UCI Machine Learning Repository (http://mlearn.ics.uci.edu/
MLSummary.html); however, for simplicity we assume that it is complete and use
it as a running example throughout this paper.
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To achieve k-Anonymity, the entry values of the quasi-identifier are general-
ized (i.e., made less specific) so that groups of at least k people look identical
in terms of their personal information. Their private information, like cancer
from Figure 1, remains unmodified. Generalization can be accomplished using
domain generalization hierarchies (DGH ’s). To illustrate how they are used,
consider the Work Class DGH from Figure 2 (adapted from [7]). At the bottom
of the Work Class DGH no generalization is applied; however, as we traverse
up the hierarchy levels, we notice that the work class becomes increasingly more
general. The generalization at the top of the DGH , where no information is re-
vealed, is called suppression. In this paper, we represent a suppressed entry using
a star symbol (�). The problem definition (adapted from sol-k-anonymity on
entries [6]) can now be stated as:

k-anonymity
Instance: An n×m dataset D, a quasi-identifier Q, DGH ’s for each

column in Q, and a positive integer k.
Solution: The least generalized k-anonymous dataset g(D).

Self-emp-
not-inc

Private

With-pay

Federal-
gov

Without-
pay

Self-emp-
inc

Local-
gov

State-
gov

Never-
worked

Self-emp Gov

Worked

*

Fig. 2. Work Class DGH

We assume all DGH ’s to be single-level DGH ’s, where each domain value
maps to � (see 4-level and single-level DGH ’s in Figure 4). The reason for
using single-level DGH ’s is discussed further in Section 4. Given these single-
level DGH ’s, the mapping of the patient dataset in Figure 1 to a 2-anonymous
patient dataset is shown in Figure 3.

2.2 Previous k-Anonymity Work

Three main k-Anonymity experimental research areas have been quickly advanc-
ing in the past few years:

– Enhancement: ensuring no other inference attacks are possible after apply-
ing k-Anonymity, e.g., (α, k)-Anonymity [28], distributed k-Anonymity [9],
t-Closeness [15], p-Sensitive k-Anonymity [25], �-Diversity [18].

– Utility: making the anonymized dataset more useful for the goal at hand,
e.g., classification [8], personalized privacy preservation [29], extra aggregate
information in the form of marginals [10], pattern discovery [3], target work-
loads of selection queries and data mining tasks [14], important columns [30],
ad hoc aggregate analysis [11].
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Fig. 3. 2-Anonymous Patient Dataset

– Algorithmics: proposing new heuristics and data structures, e.g., Datafly
[23], k-Minimal Generalization [22], Bottom-Up Generalization [26], k-Op-
timize [4], Top-Down Specialization [7], Incognito [12], Top-Down Greedy
Strict Multidimensional Partitioning [13], Greedy k-Member Clustering [5],
Genetic Algorithms [8, 17].

While continued research in each of the above areas is necessary for developing
practical solutions for privacy protection, this paper concentrates on limitations
of current Algorithmics work. In particular, genetic algorithms are limited by
their long runtimes (e.g., 18 hours [8]) and greedy optimization algorithms are
limited by their potential of getting stuck at local optimums (e.g., [26]). We pro-
pose to overcome these limitations by benefiting from the best of both worlds;
we use genetic algorithm elements to search for good solutions and greedy opti-
mization to evaluate the quality of these solutions. Appropriate techniques from
genetic algorithms research are discussed next and our framework is described
in Section 3.

2.3 Genetic Algorithms

In this section, similar to our treatment of k-Anonymity, we only provide the nec-
essary background for understanding the genetic algorithms and Ordered Greed
Framework discussed in this paper. The following genetic algorithm elements are
taken from [20, Chapter 1]:

– Population: individual members of a population are typically bit strings
and are called chromosomes. At the beginning of the genetic algorithm, the
population is randomly initialized with a fixed number (i.e., population size)
of chromosomes. A chromosome is essentially a point in the search space of
candidate solutions.
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– Fitness: a genetic algorithm evaluates the fitness of a chromosome, depend-
ing on how well it solves the given problem using a fitness function. After
all fitnesses are evaluated for a population, usually the average, best, and
worst fitnesses are recorded. A fitness landscape represents the space of all
possible chromosomes and their associated fitnesses.

– Selection: this operator selects parent chromosomes from the population
for reproduction. It is likely that chromosomes with the best fitnesses are
selected.

– Crossover: after randomly choosing one or more positions, this operator
combines selected parents to create offspring chromosomes. Based on off-
spring fitness and the replacement method used, offspring may (1) be added
to the population, (2) replace existing members of the population, or (3) not
be added to the population at all. Crossover can be seen as a way of creating
diversity, by moving the population around on the fitness landscape to ex-
plore new candidate solutions and possibly jump out of any local optimums.

– Mutation: after a chromosome is chosen with a certain probability, this
operator chooses one or more positions and mutates (e.g., changing a 0 to a
1 in a bit string) the chosen chromosome and replaces it in the population.
The probability is fixed in advance and is called the mutation rate. Mutation
is another way of introducing diversity into the population.

A good genetic algorithm finds a balance between exploring the fitness land-
scape and exploiting good chromosomes. In general, a genetic algorithm works
as follows:

1. Randomly create a population of chromosomes
2. For each chromosome, evaluate fitness
3. Select parents
4. Crossover parents to produce offspring
5. For offspring, evaluate fitness
6. Place offspring into population if necessary
7. With a mutation rate, mutate chromosomes
8. Repeat steps 2-7 until termination criteria is satisfied

Each iteration of steps 2-7 is called a generation and the entire set of gen-
erations is called a run. Given the stochastic nature of genetic algorithms, re-
searchers usually report statistics (e.g., average, best, and worst fitness) averaged
over a number of different runs on the same problem.

2.4 Previous Genetic Algorithms Work

Iyengar [8] uses a binary bit string ((n − 1) bits for each column, where n is
the number of values in that column’s domain) to represent a generalization
scheme, where a 1 indicates an endpoint of an interval where a generalization
occurs. For example, the top of Figure 4 shows a bit string representing this sort
of generalization scheme.
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Fig. 4. Different Ways to Map a Bit String to a Generalization Scheme

After applying a generalization scheme, if a row still does not look like (k−1)
other rows, the entire row is suppressed and a penalty equal to the number of
suppressions in that row is added to the fitness function. The fitness function
used is the generalization loss metric (LM):

LM =

(
∑

a

1
Na − 1

∑

r

Pa,r − 1

)

+ penalties

where Pa,r is the number of leaf nodes in the subtree of column a’s DGH rooted
at the generalized value for the value in row r. For example, assume column a is
Work Class and the value in row r is Self-emp-not-inc. Referring again to the
top of Figure 4, since the 0 bit implies that Self-emp-not-inc is generalized to
Self-emp and there are 2 values in the subtree rooted at Self-emp, Pa,r = 2.
In this example LM = (2 − 1)/(8 − 1) = 1/7.

Under Iyengar’s scheme, there are only 9 legal bit strings for the Work Class
DGH shown in the top of Figure 4. Consider bit string 1 0 1 0 1 1 1, which is
illegal because if Federal-gov and Local-gov are generalized to Gov, then so
should State-gov. To avoid these illegal bit strings, a repair method is used,
which maps illegal bit strings to legal bit strings.

To test their algorithm, they used 30162 of the 32561 rows (due to missing-
value limitations in their system) from the UCI Machine Learning Repository
Adult Database benchmark and the 8 columns described in Table 1. Each run
used a population size of 5000 and terminated after 0.5 million iterations. The
mutation rate was set at 0.002 and it took 18 hours to run.

To speed up Iyengar’s runtime, Lunacek, Whitley, and Ray [17] designed a
crossover operator that avoided illegal offspring, used a smaller population size,
changed the termination condition, and avoided mutation altogether. Although
they do not actually report their runtime, they do show graphically that their
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Table 1. Mapping Columns from the Adult Database to a Permutation

Map Col Domain Size

0 Age Continuous from 17-90 74
1 Work Class Private, Self-emp-not-inc, Self-emp-inc, Federal-gov,

Local-gov, State-gov, Without-pay, Never-worked
8

2 Education Preschool, 1st-4th, 5th-6th, 7th-8th, 9th, 10th, 11th,
12th, HS-grad, Some-college, Assoc-acdm, Assoc-voc,
Bachelors, Prof-school, Masters, Doctorate

16

3 Marital Status Married-civ-spouse, Married-AF-spouse, Divorced,
Separated, Widowed, Married-spouse-abse, Never-
married

7

4 Occupation Exec-managerial, Prof-specialty, Sales, Adm-clerical,
Tech-support, Craft-repair, Machine-op-inspct,
Handlers-cleaners, Transport-moving, Priv-house-
serv, Protective-serv, Armed Forces, Farming-fishing,
Other-service

14

5 Race White, Asian-Pac-Islander, Amer-Indian-Eskimo,
Other, Black

5

6 Sex Female, Male 2
7 Native Country United-States, Outlying-US(Guam-US, Canada, Mex-

ico, Honduras, Guatemala, Nicaragua, El-Salvador,
Ecuador, Peru, Columbia, Puerto-Rico, Dominican-
Republic, Jamaica, Cuba, Haiti, Trinadad&
Tobago, France, England, Ireland, Scotland, Holand-
Netherlands, Italy, Greece, Portugal, Yugoslavia,
Hungary, Germany, Poland, Philippines, Thailand,
Cambodia, Vietnam, Laos, India, Japan, China,
Hong, Taiwan, South, Iran
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genetic algorithm is more efficient and effective than Iyengar’s. As a final point
on previous work, Lunacek, Whitley, and Ray admit that Iyengar’s represen-
tation (which they adopt) is problematic: operators produce illegal bit strings
and representation introduces bias. In the next section, we describe our Ordered
Greed Framework, which uses a non-traditional permutation representation to
avoid these problems.

3 Ordered Greed Framework

In this section, we propose a framework that incorporates both the speed of
greedy optimization algorithms and improvement potential of genetic algorithms.
This framework allows anonymization algorithms to arrive at better local op-
timums than existing algorithms, which was listed as future work by leading
k-Anonymity research [26]. After a brief overview and explanation of usage re-
quirements, we demonstrate using Sweeney’s Datafly algorithm [23] how algo-
rithm designers may use our Ordered Greed Framework.
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3.1 Framework Overview

Our framework is structured the same as the basic genetic algorithm outlined
in Section 2.3. First random chromosomes are created and the fitness of each
chromosome is computed using a greedy optimization algorithm (e.g., Datafly).
Based on their fitnesses, chromosomes are selected as parents for crossover and
one or more new chromosomes are produced. The fitness of each new offspring
chromosome is then computed using the same greedy optimization algorithm
as before. A new population is created according to a particular replacement
strategy and each member of this new population has a specified chance of
being mutated. Fitnesses are again determined using the greedy optimization
algorithm and the process continues until the termination criteria is satisfied.
This framework is depicted in Figure 5.

1. Randomly create a population of chromosomes

For each chromosome, evaluate fitness:

Greedy Optimization Algorithm

Select parents

Crossover parents to produce offspring

For the offspring, evaluate fitness:

2. While termination criteria is not satisfied:

3.

4.

5.

6.

7. Place offshpring into population if necessary

8. With a mutation rate, mutate chromosomes

Ordered Greed Framework

Greedy Optimization Algorithm

Fig. 5. Ordered Greed Framework

3.2 Framework Usage Requirements

An ordered greed genetic algorithm [2] processes a population of permutations
and fitness is greedily evaluated based on the order in which parts of a problem
are solved. For example, a permutation in graph-coloring may specify the order
in which vertices are colored. After vertex v is colored, any vertex which follows
v in the ordering and is adjacent to v must not be colored the same as v.

To use our Ordered Greed Framework, the algorithm that evaluates fitness
(see lines 3 and 6 in Figure 5) must be

1. a greedy optimization algorithm, and
2. dependent on column ordering.
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Each chromosome is a permutation, where permutation elements represent col-
umn labels and the permutation itself represents a column ordering. This is a
very natural representation for k-anonymity and there are algorithms in the
literature which depend on column order when exploring the search space. For
example, column orders can be based on the most distinct values [23] or the
widest range of values [13]. We demonstrate in the next section how algorithms
like these may use our framework to introduce randomness and jump out of local
optimums.

3.3 Framework in Action: Adding Randomness to Datafly

Sweeney’s Datafly algorithm [23] satisfies the framework usage requirements
described in the previous section; it greedily generalizes a column based on the
largest domain size. Essentially, Datafly works in the following way: given a
permutation of column labels, greedily group records together that have identi-
cal values for the columns encountered so far in the ordering. Maintain groups
of at least size k by suppressing values where necessary. For each consecutive
column label in the permutation, possible row groupings become more and more
restrictive.

For example, consider the Patient dataset in Figure 1 and assume the columns
are mapped to permutation 5 6 7 3 4 0 1 2, i.e., the column ordering is Race, Sex,
Native Country, Marital Status, Occupation, Age, Work Class, Education.2

To evaluate the fitness of this example, we first execute the query SELECT
COUNT(*) FROM Patient GROUP BY Race. We can tell from COUNT(*) that k ≥
2, so the number of values that have to be suppressed = 0. Next we execute the
query SELECT COUNT(*) FROM Patient GROUP BY Race, Sex. The patients
that are Black and Male or Female are no longer in groups of size k ≥ 2, so we
execute UPDATE Patient SET Male=* AND Female=* WHERE Race=Black and
the number of values that have to be suppressed = 3. Now we execute SELECT
COUNT(*) FROM Patient GROUP BY Race, Sex, Native Country and continue
in the same way until we group by all the columns in permutation order. Given
that the total possible number of values that could have been suppressed is n×m
(the number of rows multiplied by the number of columns), the fitness for per-
mutation 5 6 7 3 4 0 1 2 = 10×8− (0+3+3+7+7+10+5+8) = 80−43 = 37,
which is the number of entries in the resulting k-anonymized version of D that
are not suppressed, as shown in Figure 3.

Previous heuristic approaches have made use of optimizations like pruning [4,
26], pre-computation [12], and crossovers that preserve validity [17]. Since UP-
DATE queries are very expensive, we avoid them using a tree optimization.
The tree is an internal data structure created from a single GROUP BY query,
where each node in the tree has an ID, a count, zero or more children, and ex-
actly one parent. For example, the tree corresponding to the dataset in Figure 1
2 Note that this permutation was chosen arbitrarily and was not determined by the
Datafly heuristic (i.e., column-wise ordering based on domain size in descending
order) for the Adult dataset. According to the domain sizes from Table 1, the per-
mutation determined by Datafly for the Adult dataset is 0 7 2 4 1 3 5 6.
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Fig. 6. Internal Data Structure for Patient Dataset given permutation 5 6 7 3 4 0 1 2

Fig. 7. 2-Anonymous Internal Data Structure for Patient Dataset given permutation
5 6 7 3 4 0 1 2

and permutation 5 6 7 3 4 0 1 2 is created after executing the query SELECT
*, COUNT(*) FROM Patient GROUP BY Race, Sex, Native Country, Marital
Status, Occupation, Age, Work Class, Education. This tree is shown in Fig-
ure 6 and the 2-anonymous version is shown in Figure 7.

In addition to the above tree optimization for Datafly, we can optimize the
Ordered Greed Framework by storing a lookup table that contains the fitnesses
evaluated in each generation; instead of blindly re-calculating fitnesses in steps 3
and 6 of Figure 5, we first check to see if it has already been evaluated and stored
in the lookup table. These optimizations (i.e., tree and lookup) significantly
improve the overall runtime (see Figure 8).

The optimized Datafly algorithm is given in Figures 9 and 10. Lines 1–5 of
Figure 9 determine column domain sizes and place the columns in descending
domain-size order. Line 6 performs a GROUP BY query on all columns in this
order. Lines 7–19 build a tree, such as the one depicted in Figure 6, from the
result of this query. After enforcing anonymity in line 20 (described next), lines
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Fig. 8. How Optimization Improves Performance. A is the runtime when both opti-
mizations are used, B is the runtime when only the tree optimization is used, C is the
runtime when only the lookup optimization is used, and D is the runtime when neither
of the optimizations are used.

21–23 count all the suppressions in the tree, calculate fitness (i.e., the number
of values not suppressed), and return this fitness.

The pseudocode for enforcing anonymity in Figure 10(a) describes a recursive
function with the majority of work occurring in line 4, where a helper function
is called. This helper function is also a recursive function and is given in Fig-
ure 10(b). Line 1 of this helper function initializes three variables: (1) totUnderk
sums the counts of nodes that have suppressed values, (2) minOverk keeps track
of the smallest count of nodes with values other than �, and (3) minIndex records
the index of the node with the count of size minOverk. In lines 2–10, for each
child of an input node, if it is necessary to suppress a value, then appropriate
updates are made to totUnderk, minOverk, and minIndex. In lines 11–14, if there
were suppressions, but still not enough to satisfy k-Anonymity, then the value
of the node indexed at minIndex is suppressed. Finally, lines 15–16 merge nodes
and update counts for nodes with matching values.

To use this algorithm in our framework, we simply omit lines 1–4 in Figure 9,
which determine the domain size of each column and the column ordering based
on domain sizes. As the framework randomly generates column orderings instead
of generating a particular ordering based on a greedy heuristic, these lines of code
are no longer necessary. Notice that besides the framework’s ability to jump
out of local optimums, the Datafly algorithm involves suppressing data, local
recoding3, and generalizing/suppressing numeric attributes without hierarchies,
which are extensions listed as future work by leading researchers (see Section 1).

3 An example of local recoding (i.e., it is not necessary to generalize all identical data
values together [12]) is apparent from the Work Class nodes of the tree in Figure 7,
since instances of Private exist, even though the same value is suppressed for White
Males from the United States. Note that Sweeney’s version of Datafly [23] is only
capable of global recoding, (i.e., if one instance of Private has to be suppressed,
then all other instances of Private must be suppressed as well.)
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4 Experimental Setup

We designed experiments to test the following hypotheses:

1. The Ordered Greed Framework has a faster runtime and can produce higher
quality results (i.e., larger number of entry values that are not suppressed)

1. for each column i in D
2. data = result of SELECT COUNT(*) FROM D GROUP BY i’s name
3. size[i] = COUNT(*)
4. permutation order = column order determined by sorting size[i] in descending order
5. sql = column names in permutation order
6. data = result of SELECT sql, COUNT(*) FROM D GROUP BY sql
7. root = new node (ID="ROOT", count=0, children=null, parent=null)
8. for each record in data
9. for each entry in this record for which a node does exist
10. do nothing
11. for each entry in this record for which a node does not yet exist
12. if this entry corresponds to a leaf node
13. c = COUNT(*)
14. else
15. c = 0
16. currentNode = new node (ID=this entry, count=c, children=null, parent=root)
17. root.addChild(currentNode)
18. root = currentNode
19. propagateCounts(root)
20. EnforceAnonymity(root, k)
21. setNumSuppressions(root)
22. fitness = numRecords * numCols - numSuppressions
23. return(fitness)

Fig. 9. Pseudocode for Datafly Algorithm

(a)

1. node.getChildren()
2. if node is a leaf node
3. return
4. EnforceAnonymityHelper(node, k)
5. node.getChildren()
6. for each child
7. EnforceAnonymity(child, k)

(b)

1. minIndex = 0, totUnderk = 0, minOverk = INFINITY
2. node.getChildren()
3. for each child
4. if (child.getCount() < k)
5. totUnderk = totUnderk + child.getCount()
6. child.setID("*")
7. else
8. if (child.getCount() < minOverk)
9. minOverk = child.getCount()
10. minIndex = this child’s index
11. if ((totUnderk < k) && (totUnderk > 0))
12. minNode = child with minIndex
13. totUnderk = totUnderk + minNode.getCount()
14. minNode.setID("*")
15. if (totUnderk > 0)
16. MergeLikeChildren(node)

Fig. 10. Pseudocode for (a) EnforceAnonymity and (b) EnforceAnonymityHelper
Algorithms
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than previous genetic algorithms (i.e., Iyengar’s [8] and Lunacek, Whitley,
and Ray’s [17]).

2. The Ordered Greed Framework that evaluates fitness using an existing
greedy optimization algorithm (e.g., Sweeney’s Datafly [23]) can produce
higher quality results than the existing greedy optimization algorithm can
alone. Obviously, Datafly is faster than Datafly + the Ordered Greed
Framework.

In this section, we provide implementation details and results for these exper-
iments. As the number of variables should be minimal when comparing one
algorithm to another, we abide by the following three guidelines:

– Single-level DGH’s: to reduce the dependencies on hierarchies and over-
head in dealing with illegal chromosomes. For example, in our implementa-
tion of previous genetic algorithms, we change the bit string mapping from
the top of Figure 4 to the mapping shown at the bottom of Figure 4. The
key observation here is that a generalization scheme which changes a value
to � has a loss of LM = (8 − 1)/(8 − 1) = 1 (i.e., for single-level DGH ’s,
LM = number of �’s in the anonymized dataset). Deciding if one hierarchy
is better than another is a utility issue, not an algorithmics issue.

– Loss Metric: to highlight algorithmic performance. If the algorithm works
for one general metric at the cell-level, it can be extended to work for other
metrics.

– Missing Data: to show limitations. Rather than delete records that have
missing values (e.g., in the Adult dataset, a missing value is represented by
a question mark), we treat these values the same as any other value in the
domain. As we expect real-world datasets to have missing data, processing
such a dataset as is allows for less information loss and is more practical.

4.1 Implementation

Like previous work, we use 8 columns from the Adult Database benchmark (see
Table 1) and assume it fits into memory. Our code is written in Java and we
use a mySQL database. All experiments were run on an AMD Athlon 1809 MHz
machine with a cache size of 512 KB and 895 MB of free memory.

Our algorithm implementations are named in the following way: Sweeney’s
Datafly algorithm is called Datafly, the Ordered Greed Framework which
evaluates fitness using Datafly is called Datafly+OGF, or just OGF, and the
traditional Genetic Algorithmic approach used in previous work is called tradGA.
Implementation details for each of these algorithms is discussed next.

– Datafly: Refer to pseudocode and description in Section 3.3.
– OGF: For a broad overview of OGF, see Section 3.1. All experiments use

the implementation described in Table 2; the number of fitness evaluations,
number of runs, and selection and replacement methods are the same as in
Lunacek, Whitley, and Ray [17] and we performed a series of experiments
to determine suitable values for population size and mutation rate, as well
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as which operators to use. Note that the maximum number of fitness eval-
uations = (population size+number of offspring)× number of generations
= (10+1)× 15000 = 165000. Through experimentation, we found that such
a large number of fitness evaluations was unnecessary, as the best solution
did not change for a majority of the 15000 generations. We added the no
change in the best solution after 10 generations condition to the termination
criteria (to avoid useless evaluations) and as a result, reduced the number of
generations from 15000 to 11 - 75 generations (i.e., the maximum number of
fitness evaluations = (10 + 1)× 75 = 825). Setting the maximum number of
consecutive generations without improvement is a widely used termination
criteria in genetic algorithms research (e.g., [16, 21]).

– tradGA: When we compare OGF to tradGA, we are essentially comparing
permutation and bit string representations. Therefore, we use the same OGF
implementation as above and only modify it enough to accommodate a bit
string representation. In particular, we modify the internal data structure
(see Figure 6) to always use permutation order 0 1 2 3 4 5 6 7. We also
modify the EnforceAnonymityHelper pseudocode (see Figure 11) and the
crossover and mutation operators (see Figure 12). The modified helper al-
gorithm works in the following way. For each possible value of each domain,
lines 1–6 of Figure 11 check if suppression is necessary. Then, in line 7, nodes
with matching values are merged and their counts are updated.

Table 2. Ordered Greed Framework Implementation Details

Population size 10
Number of runs 15
Termination criteria Terminate after 15000 generations or when no

improvement in best fitness after 10 generations
Selection Rank; select top two parents (highest fitness)
Crossover Ordered for permutation
Replacement Offspring replaces worst chromosome if better
Mutation Swap for permutation
Mutation rate 10 %

1. for each value in each domain
2. if (corresponding bit==0)
3. node.getChildren()
4. for each child
5. if (child.getID() == this value)
6. child.setID("*")
7. MergeLikeChildren(node)

Fig. 11. Pseudocode for EnforceAnonymityHelper Algorithm for Bit Strings

4.2 Results

This section shows the various solution quality results for Datafly, OGF+Datafly,
and tradGA, where quality is based on fitness (i.e., the number of entry values
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Fig. 13. Comparing Solution Quality for Each Value of k

not suppressed), as well as runtime results. We report average results over 15
runs for k = 5, 10, 25, 50, 75, 100, 150, 200, 250, 500, 750, 1000.

– Solution Quality: For each algorithm, Figure 13 shows a graph which plots
the best fitness over all runs and all generations for increasing values of k.

– Quality Improvements: Table 3 shows how Datafly’s solution quality
improves using our Ordered Greed Framework. Table 4 lists the best and
worst solutions found by OGF+Datafly and their corresponding fitnesses for
each value of k.

– Search Space Exploration: Figure 14 displays a graph that plots, for
OGF+Datafly and tradGA, the best, average, and worst fitnesses for an in-
creasing number of generations when k=5.

– Runtime: Figure 15 shows a graph which plots, for each algorithm, the
average runtime over all runs and all generations for increasing values of k.
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Table 3. OGF Improves Solution Quality. This table lists the percent of dataset entry
values not suppressed for Datafly and Datafly+OGF and the percent improvement for
each value of k.

k Datafly Datafly+OGF Improvement

5 61.68% 84.80% 23.12%
10 51.08% 80.76% 29.68%
25 42.29% 75.42% 33.13%
50 36.87% 71.44% 34.56%
75 31.43% 68.66% 37.22%
100 25.99% 67.49% 41.50 %
150 21.01% 65.34% 44.34%
200 19.29% 62.92% 43.62%
250 17.24% 60.91% 43.67%
500 14.72% 55.60% 40.87%
750 18.71% 53.53% 34.82%
1000 31.45% 49.63% 18.18%

Table 4. OGF: Summary of Best and Worst Solutions

k Best Best Worst Worst
Fitness Solution Fitness Solution

5 220892 1 5 6 7 3 2 0 4 150191 2 0 4 3 1 5 7 6
2 5 1 7 0 6 3 4
3 5 6 7 1 2 0 4
6 5 1 7 0 2 3 4
6 5 1 7 3 2 0 4

10 210362 3 5 6 7 1 2 0 4 118333 4 0 2 6 1 3 5 7
25 196453 5 3 7 6 1 4 2 0 80917 0 4 7 5 2 1 3 6
50 186085 3 7 6 5 1 4 0 2 65436 0 4 2 7 5 1 3 6
75 178841 6 5 7 3 2 1 4 0 59086 0 4 7 2 3 5 6 1
100 175803 7 6 5 1 3 4 0 2 60163 0 4 3 2 5 6 1 7

7 6 5 1 3 4 2 0
150 170209 6 7 5 3 1 4 0 2 54718 0 2 1 3 5 6 4 7

0 7 5 3 1 4 6 2 7 6 2 4 1 0 3 5
200 163888 5 6 7 1 3 4 0 2 50132 0 4 2 3 5 7 6 1
250 158651 6 5 7 3 1 2 0 4 45340 0 2 7 5 6 4 3 1

6 5 4 1 3 2 0 7
6 3 4 1 5 2 0 7

500 144819 5 6 7 3 0 1 2 4 31252 0 4 1 3 5 2 7 6
5 6 7 3 2 1 0 4 0 4 1 2 6 3 5 7

750 139442 6 7 5 1 3 4 2 0 35263 0 4 5 6 1 2 3 7
5 7 6 1 3 4 2 0

1000 129271 7 5 0 6 3 1 2 4 44439 4 3 2 6 1 5 7 0
7 5 4 6 3 1 2 0 4 3 0 2 5 1 6 7
7 5 1 6 3 4 2 0 4 5 3 7 6 1 2 0
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5 Analysis and Discussion

This section discusses our experimental results in detail. In Section 5.1, we com-
pare the quality of Datafly+OGF, tradGA, and Datafly. In Section 5.2, we discuss
Datafly quality improvements using OGF. In Section 5.3, we analyze popula-
tion data to understand why Datafly+OGF obtains higher quality solutions than
tradGA, and in Section 5.4, we compare the runtime of each algorithm. For all
results, significance is based on standard paired t-tests with probability = 0.01.
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Fig. 14. OGF vs. tradGA: Average Fitness Over 15 Runs for Each Generation

5.1 Datafly+OGF Produces the Highest Quality Solutions

Recall that quality is based on fitness (i.e., the number of entry values that are
not suppressed). Notice that in Figure 13, (Datafly+OGF) produces statistically
higher quality results than those of Datafly and tradGA. There is no significant
difference in quality for Datafly and tradGA over all values of k; however, it
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Fig. 15. Comparing Runtime for Each Value of k

is interesting that Datafly outperforms tradGA for very low and very high k
values. We speculate this phenomenon may be related to the distribution of
data. While further investigation is required, support for this speculation comes
from the fact that Datafly at k = 1000 outperforms k = 750 by almost a factor
of 2. Given that Datafly is a deterministic greedy algorithm, genetic algorithm
elements like number of fitness evaluations and number of runs do not play a
role in the above phenomenon. As we will see next, a column ordering, such as 0
7 2 4 1 3 5 6 (determined by Datafly for the Adult dataset), may produce good
results for some values of k and may not for other values of k.

5.2 OGF Allows Datafly to Jump Out of Local Optimums

Table 3 shows that a greedy optimization algorithm for k-Anonymity can jump
out of local optimums and improve its solution quality (i.e., increase the number
of entry values that are not suppressed) using our Ordered Greed Framework. On
average, for all values of k, the percent improvement from using the framework
is 34.6%.

Table 4 shows a surprising set of results. More specifically, given that anonymi-
zation algorithms often process datasets in column-wise order, we can see here
that a random column ordering can significantly lead to higher quality solutions
than orderings determined by known greedy heuristics. For example, as age has
the most distinct values and the widest range of values (see Table 1), column
orders based on the most distinct values [24] or the widest range of values [13]
require a leading 0. Notice that a leading 0 only shows up as a best solution in
Table 4 one time, namely for k = 150. Moreover, a leading 0 appears frequently
in the worst solutions. This suggests that these deterministic greedy algorithms
from the literature may produce solutions which are far from optimal.

5.3 OGF Explores the Search Space Better than tradGA

Referring to Figure 14, we again see that OGF produces significantly higher
quality solutions (i.e., larger number of entry values that are not suppressed)
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than tradGA. Furthermore, as OGF produces a high-quality solution very early in
the first generation, our framework would be useful for on-demand applications
like health research and surveillance, where the user may require results
within seconds, or may be willing to wait longer for a potentially higher-quality
solution.

When all chromosomes in a population have the same fitness (called pop-
ulation convergence) they come to a consensus on the best solution, which is
a desirable genetic algorithm feature. Notice that OGF’s population converges
to a similar resulting fitness, while tradGA’s population does not converge and
may need more time to explore the search space. This lack of exploration may
be due to a larger search space. Consider the element-to-column mapping de-
scribed in Table 1. OGF’s permutation chromosomes represent candidate so-
lutions in a search space size = 8! = 40320 for the Adult dataset, whereas
tradGA’s bit string chromosomes exist in a search space size = 2167−8 = 2159 =
7.3 × 1047.

5.4 OGF Runs in a Reasonable Amount of Time

From Figure 15, we see that Datafly runs very fast for all values of k (3 or 4
seconds). Recall that we expected Datafly to run faster than OGF+Datafly, as
Datafly (except for the first four lines) is called as a module many times inside
OGF+Datafly. Figure 15 also shows that OGF+Datafly has a longer runtime than
tradGA for most values of k. We attribute the longer runtime to more complex
fitness evaluations (see Figures 10(b) and 11) and operators (see Figure 12). It
is encouraging that at very low k values, OGF performs the same or significantly
better than tradGA; although the choice of k is still not clear, experts in the field
say that k need not be large (e.g., 5 or 6 [19], less than 10 [27]).4 Note that for
the smallest k considered here (k = 5), the runtime is 71.9 seconds, or 1 minute
and 12 seconds. Even in the worst case (i.e., k=200), the runtime is 197 seconds,
or 3 minutes and 17 seconds, which is comparable to runtimes of several greedy
algorithms in the literature [4,12,26] and is a drastic improvement over Iyengar’s
18-hour runtime [8].

A good genetic algorithm needs to balance exploring the search space and
exploiting good chromosomes (see Section 2.3). Iyengar [8] may have explored too
much with his large population evolving over large number of generations. Given
this and knowledge that the fitness function is the most time-consuming aspect
of a genetic algorithm for privacy protection, our implementations of OGF and
tradGA use a much smaller population size (10 random chromosomes compared
to Iyengar’s 5000). To overcome our small population’s lack of diversity, we use a
high mutation rate (10% compared to Iyengar’s 0.2% [8]), which leads to further
exploration of the search space.

4 Algorithmics researchers test their algorithms for high values of k (10-1000); however,
the Newfoundland and Labrador Centre for Health Information (NLCHI) currently
release statistics to the public if k ≥ 5.
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6 Conclusions

The downside to a greedy hill-climbing algorithm is that the solution may only be
a local optimum. In this paper, we proposed a new genetic algorithm framework
that avoids this inadequacy and benefits from greedy optimization. We showed
that our Ordered Greed Framework (using Datafly as an internal module):

1. produces higher quality solutions (i.e., less suppressed entries) than (a) pre-
vious genetic algorithms and (b) Datafly alone;

2. allows Datafly to jump out of local optimums, causing an average quality
improvement of 34.6%;

3. explores the search space better than previous genetic algorithms;
4. runs in a reasonable amount of time.

Also in our investigation of the second point above, we discover a surprising
result concerning at least two widely-accepted greedy optimization algorithms
in the literature. More specifically, given that anonymization algorithms often
process datasets in column-wise order, we show that a random column ordering
can significantly lead to higher quality solutions than orderings determined by
known greedy heuristics. Furthermore, our implementation of Datafly inside
the framework includes nearly all extensions listed as future work by leading
research in this area [26]: (1) avoiding getting stuck at poor local optimums,
(2) suppressing data, (3) local recoding, and (4) generalizing numeric attributes
without hierarchies.

Future research includes optimizing our Ordered Greed Framework by system-
atically exploring parameter settings (e.g., population size, mutation rate, and
operators) and other genetic algorithmic techniques (e.g., seeding, elitism, and
micro-genetic algorithms). As we intend to eventually offer a working solution
for health research and surveillance, we also plan to make minor modifications
to our algorithms and adopt techniques from utility research, so that our fitness
metric reflects the quality of the data after evaluation. Unless we implement gen-
eralization, include metrics for applications like classification [8] and association
rule mining [3], and test our implementation on real patient data, it is unlikely
that our framework will be used in practice. Finally, it would be interesting to
determine if our framework would be useful for other applications that depend
on column ordering (e.g., building decision trees).
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Abstract. In this age of globalization, organizations need to publish their micro-
data owing to legal directives or share it with business associates in order to
remain competitive. This puts personal privacy at risk. To surmount this risk,
attributes that clearly identify individuals, such as Name, Social Security
Number, and Driving License Number, are generally removed or re-
placed by random values. But this may not be enough because such de-identified
databases can sometimes be joined with other public databases on attributes such
as Gender, Date of Birth, and Zipcode to re-identify individuals who
were supposed to remain anonymous. In the literature, such an identity-leaking
attribute combination is called as a quasi-identifier. It is always critical to be able
to recognize quasi-identifiers and to apply to them appropriate protective mea-
sures to mitigate the identity disclosure risk posed by join attacks.

In this paper, we start out by providing the first formal characterization and a
practical technique to identify quasi-identifiers. We show an interesting connec-
tion between whether a set of columns forms a quasi-identifier and the number of
distinct values assumed by the combination of the columns. We then use this char-
acterization to come up with a probabilistic notion of anonymity. Again we show
an interesting connection between the number of distinct values taken by a com-
bination of columns and the anonymity it can offer. This allows us to find an ideal
amount of generalization or suppression to apply to different columns in order to
achieve probabilistic anonymity. We work through many examples and show that
our analysis can be used to make a published database conform to privacy rules
like HIPAA. In order to achieve probabilistic anonymity, we observe that one
needs to solve multiple 1-dimensional k-anonymity problems. We propose many
efficient and scalable algorithms for achieving 1-dimensional anonymity. Our al-
gorithms are optimal in a sense that they minimally distort data and retain much
of its utility.

1 Introduction

“Over a year and a half, one individual impersonated me to procure over $50,000 in
goods and services. Not only did she damage my credit, but she escalated her crimes to
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a level that I never truly expected: she engaged in drug trafficking. The crime resulted in
my erroneous arrest record, a warrant out for my arrest, and eventually, a prison record
when she was booked under my name as an inmate in the Chicago Federal Prison.” - An
excerpt from the verbal testimony of Michelle Brown to a US Senate Committee [11].

Unfortunately, in today’s highly networked digital world, incidents like the above
with Michelle Brown are commonplace. According to the Bureau of Justice Statistics
Bulletin [8], 3�6 million households, representing 3% of the households in the United
States, discovered that at least one member of the household had been the victim of
identity theft during the previous 6 months in 2004. According to the same report, the
estimated loss as a result of identity theft was about $ 3.2 billion. Needless to say that
preventing identity thefts is one of the top priorities for government, corporations and
society alike.

Globalization further complicates this picture. Due to legal directives or business as-
sociations, there are multiple scenarios where organizations need to share or publish
their micro-data to remain competitive. This puts personal privacy at further risk. To
surmount this risk, attributes that clearly identify individuals, such as Name, Social
Security Number, Driving License Number, are generally removed or re-
placed by random values. But this may not be enough because such de-identified
databases can sometimes be joined with other public databases on seemingly innocuous
attributes to re-identify individuals who were supposed to remain anonymous. For ex-
ample, according to one study [33], approximately 87% of the population of the United
States can be uniquely identified on the basis of Gender, Date of Birth, and
5-digit Zipcode. The uniqueness of such attribute combinations leads to a class of
attacks where data is re-identified by joining multiple and often publicly available data-
sets. This type of attack was illustrated by Sweeney in [33] where the author was able to
join a public voter registration list and the de-identified patient data of Massachusetts’
state employees to determine the medical history of the state’s governor.

In literature, such an identity-leaking attribute combination is called as a quasi-
identifier. It is always critical to be able to recognize quasi-identifiers and to apply
appropriate protective measures to mitigate the identity disclosure risk posed by join
attacks. In fact, Sweeney herself proposed a k-anonymity model in [35] for the same.
According to her, a database table is said to be k-anonymous if for each row in the table
there are k � 1 other rows in the table that are identical along the quasi-identifier at-
tributes. Clearly, a join with a k-anonymous table would give rise to k or more matches
and create confusion. Thus, an individual is hidden in a crowd of size k giving her k-
anonymity. It also means that the identity disclosure risk is at most 1�k for the “join”
class of attacks.

Although such a simple and clear quantification of privacy risk makes the k-anony-
mity model attractive, its widespread use in practice is severely hampered owing to the
following factors:

1. Choice of k is not clear. From a pure privacy point of view, larger k would mean
more privacy, but it comes at the cost of utility [3]. What is the right choice of k for
the given data and the given notion of utility has not been very well understood yet.

2. For the k-anonymity model to be effective, it is critical that there is a complete
understanding of the quasi-identifiers for the given data-set. But there is no real
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formalism available for deciding whether an attribute combination could form a
quasi-identifier. This is currently done manually, based on folk-lore and human
expertise.

3. For a given k, the goal is always to minimally suppress or generalize the data such
that the resultant data-set is k-anonymous. However, for some natural notions of
measuring this resultant distortion, the minimization problems turn out to be NP-
Hard [26, 4, 6].

On the approximation front, no efficient but good approximation algorithms are
currently known. The known algorithms are either Õ(k) approximations [26, 4] or
super-linear [6] - thus making them inefficient or expensive.

1.1 Paper Organization and Contribution

In this paper, we start out by providing the first formal characterization and a practical
technique to identify quasi-identifiers. In Section 2, we also show an interesting con-
nection between whether a set of columns forms a quasi-identifier and the number of
distinct values assumed by the combination of the columns.

We then use this characterization in Section 3 to come up with a probabilistic notion
of anonymity. Again we show an interesting connection between the number of distinct
values taken by a combination of columns and the anonymity it can offer. This allows
us to find an ideal amount of generalization or suppression to apply to different columns
in order to achieve probabilistic anonymity. We work through many examples and show
that our analysis can be used to make a published database conform to privacy rules like
HIPAA.

In order to achieve the probabilistic anonymity, we observe that one needs to solve
multiple 1-dimensional k-anonymity problems. In Section 4, we propose many efficient
and scalable algorithms for achieving 1-dimensional anonymity. Our algorithms are op-
timal in a sense that they minimally distort data and retain much of its utility. The algo-
rithms provided are a stark contrast to previous NP-hard results and comparatively more
complicated algorithms for the previous notion of anonymity called k-anonymity [35].

We then experimentally verify our algorithms on real life data sets in Section 5. We
sketch the related work in Section 6 and finally conclude in Section 7.

2 Automatic Detection of Quasi-identifiers

Definition 1. A quasi-identifier set Q is a minimal set of attributes in table T that can
be joined with external information to re-identify individual records (with sufficiently
high probability).

Above definition is from [29]. A similar definition can be found in an earlier paper of
Dalenius [16]. As the reader can sense, this definition is informal since it does not make
“external information” and “sufficiently high probability” explicit. Possibly because
of this, we do not know any formal procedure or test for identifying quasi-identifiers.
Almost always, researchers and practitioners assume that quasi-identifier attribute sets
are known based on a specific knowledge domain [23].
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We present a more formal definition of quasi-identifier below. In our definition, we
do not insist on minimality of attribute set although one could easily accommodate
it if required. The external information is the universal table � having information
about an entire (relevant) population. It has n rows. Typically, � would mean census
records that many countries make readily available [2]. The columns of the universal
table include the quasi-deintifier columns among other columns.

Definition 2. �-quasi-identifier. An � quasi-identifier is a set of attributes along which
an � fraction of rows in the universe can be uniquely identified by values along the
combination of these attribute columns.

Example 1. Empirically it has been observed that 87% of the people in the U.S. can be
uniquely identified by the combination of Gender, Date of Birth and Zipcode.
Therefore (Gender, Date of Birth, Zipcode) forms a 0�87-quasi-identifier for
the U.S. population. Note that the U.S. census table is our universal table � here.

Ideally, given an � and �, it is straight-forward to figure out whether some particular
attribute combination forms an �-quasi-identifier in � by simply measuring the number
of singletons in that attribute combination. One may even try an apriori like approach [7]
and calculate all �-quasi-identifiers in �. In practice, there are errors in � that come
in during data collection phase itself [12, 1] and the knowledge about � is never exact.
This would lead to erroneous conclusions about a quasi-identifier. Therefore, it does
not justify the expensive calculations given above. In fact, one then prefers a quick and
inexpensive approach that gives a good estimate of the same.

In what follows, we assume that the universal table � itself is not known. What we
know is that it is a random sample built with replacement from a probability space.
Thus our analysis is probabilistic. For the sake of analysis, we require that there is a
probability distribution, but in reality, our final results are independent of this proba-
bility distribution. Moreover, we work only with the expectations since our goal is to
give good estimates quickly. Since the sum of random variables is tightly concentrated
around the expectation (by bounds like the Chernoff bounds [15]), our analysis and re-
sults are quite fair. We do not work out the Chernoff analysis though in order to keep
our results and presentation simple.

We build our probability space on the distinct values that an attribute combination
can take. Therefore, we need to know the number of distinct values for every attribute
combination. Since one can get (or reasonably estimate) the count of distinct values for
each attribute in � [17], we simplify our task with the following assumption.

Definition 3. Multiple Domain Assumption. Let d1, d2, � � �, dk be the number of dis-
tinct values along columns C1, C2, � � �, Ck respectively. Then, the total number of distinct
values taken by the (C1�C2� � � � �Ck) column set is D � d1 � d2 � � � � dk.

Example 2. We study the number of distinct values taken by the set of columns
(Gender, Date of Birth, Zipcode). The number of distinct values of column
Gender (C1) is d1 � 2. The number of distinct values of column Date of Birth
(C2) can be approximated as d2 � 60 � 365 � 2 � 104.1 The number of distinct values

1 Throughout this paper we assume that the ages of people belonging to the database comes
from an interval of size 60 years.
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along column Zipcode (C3) is d3 � 105. The number of distinct values of the column-
set (Gender, Date of Birth, Zipcode) is D � d1�d2�d3 � 2� (2�104)�105

�

4 � 109.
As another example, consider the set of columns (Nationality, Date of

Birth, Occupation). The number of distinct values of column Nationality (C1)
is d1 � 200. Once again, the number of distinct values of column Date of Birth
(C2) can be approximated as d2 � 60 � 365 � 2 � 104. The number of distinct val-
ues of column Occupation (C3) is roughly d3 � 100. Thus D � d1 � d2 � d3 �

200 � (2 � 104) � 100 � 4 � 108.

Remark. The multiple domain assumption is a weak bound especially is the columns are
correlated. Please note that it may be possible to consider correlations among various
attributes and, therefore, arrive at a tighter estimate of D. Such analysis would certainly
lead to improved bounds in what follows. Yet we decided not to incorporate correlations
- partly because it would have made analysis very tough and the main purport of our
results could have easily been lost, but largely because we also wanted our results to be
viable and useful. Readers will notice that larger estimate for D implies stricter privacy
control and more anonymization in what follows. This is acceptable in practice as long
as it is easily doable and does not lead to high loss in data utility.

Suppose that a set of columns take D different values with probabilities p1, p2, � � �,
pD, where

�D
i�1 pi � 1. Let us first calculate the probability that the ith element is a

singleton in the universal table �. It means first selecting one of the entries in the table
(there are n choices), setting it to be this ith element (which has probability pi), and
setting all other entries in the table to something else (which happens with probability
(1� pi)n�1). Thus, the probability of ith element being a singleton in the universal table
� is npi(1 � pi)n�1.

Let Xi be the indicator variable representing whether the ith element is a singleton.
Then, its expectation

E[Xi] � P[Xi � 1] � npi(1 � pi)n�1 � npie
�npi �

Let X �

�D
i�1 Xi be the counter for the number of singletons. Now its expectation is

given by

E[X] �
D�

i�1

E[Xi] �
D�

i�1

npie
�npi �

Let us analyze which distribution maximizes this expected number of singletons. We
aim to maximize

�D
i�1 xie�xi , subject to

�D
i�1 xi � n and 0 � xi, �1 � i � D.

Theorem 1. If D � n, then the expected number of singletons is bounded above by D
e .

PROOF.[of theorem 1] If f (x) � xe�x, f
�

(x) � (1 � x)e�x and f
��

(x) � (x � 2)e�x. Thus,
the function f has a global maximum at x � 1, since f

�

(1) � 0 and f
��

(1) � 0.
Now the expected number of singletons,

D�
i�1

xie
�xi �

D�
i�1

e�1
�

D
e
�
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This expression is a tight upper bound on the expected number of singletons for
D � n. For example, it is almost obtained by setting xi � 1, for i � 1� 2� � � � � D � 1, and
xD � n � D � 1. �	

Theorem 2. If D 
 n, then the expected number of singletons is bounded above by
ne

�n
D .

PROOF.[of theorem 2] If f (x) � xe�x, f
�

(x) � (1 � x)e�x and f
��

(x) � (x � 2)e�x. The
function f has a point of inflection at x � 2, since f

��

(x) � 0 for x � 2 implying the
function is concave here, and f

��

(x) � 0 for x � 2 implying the function is convex here.
First we claim that on maximizing

�D
i�1 xie�xi , no xi 
 2. Suppose otherwise: after

maximizing
�D

i�1 xie�xi , some xa 
 2. As D 
 n, and
�D

i�1 xi � n, some xb � 1. For some
small Æ, replacing xa by xa � Æ and xb by xb � Æ we retain

�D
i�1 xi � n. As f (x) � xe�x

increases towards x=1, f (xa � Æ) � f (xa) and f (xb � Æ) � f (xb). Thus
�D

i�1 xie�xi is
increased, contradicting the fact that it was maximized. Thus, �1 � i � D, xi � 2 .

Now f
��

(x) � 0 for 0 � x � 2. Since f is concave, we can apply Jensen’s inequal-
ity [28] 2 to get

D�
i�1

xie
�xi

� D
D�

i�1

1
D

xie
�xi

� D � (
D�

i�1

xi

D
)e�(

�D
i�1

xi
D )

� ne
�n
D �

Thus, if D 
 n, the expected number of singletons is bounded above by ne
�n
D . �	

Figure 1 shows how the maximum expected fraction of singletons or unique rows in a
collection of n rows behaves, as the number of distinct values, D, varies. The graph plots
the maximum expected fraction of unique rows as a function of D

n . It is the line D
en for

D
n � 1 according to Theorem 1. For D

n 
 1, it is the curve e
�n
D according to Theorem 2.

The curve is both continuous and smooth (differentiable) at D
n � 1 with f (1) � 1

e and
f
�

(1) � 1
e .

Figure 1 forms a ready reference table in order to test whether a set of attributes
forms a probable quasi-identifier. For example, if for a set of attributes D � 3n, then it
is unlikely that the set of attributes will form a 0�75 quasi-identifier. If a set of attributes
do not form an �-quasi-identifier according to the the number of distinct values in Fig-
ure 1, then they almost certainly do not form an �-quasi-identifier as the plot gives the
maximum expected fraction of singletons (as per Theorem 1 and Theorem 2).

Example 3. We now show how (Gender, Date of Birth, Zipcode) forms a
quasi-identifier when restricted to the U.S. population. The size of the U.S. popula-
tion can be approximated as 3 � 108, that is, the size of the universal table n is 3 � 108.
The number of distinct values taken by the attribute set (Gender, Date of Birth,

2 If f is a concave function, and
�m

i�1 pi � 1, with pi � 0 �i, then
�m

i�1 pi f (xi) � f (
�m

i�1 pi xi).
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Fig. 1. Quasi-Identifier Test

Zipcode) is 4 � 109 from Example 2. Therefore, by Theorem 2, the maximum ex-
pected fraction of rows with singleton occurrence is e�3�108�4�109

� e�0�075 � 0�93. Thus,
(Gender, Date of Birth, Zipcode) is a potential 0�93 quasi-identifier. Please
recall that this combination is already known to be a 0�87 quasi-identifier [35].

Example 4. We now give an example of a set of attributes that does not form a quasi-
identifier. Let us consider (Nationality, Date of Birth, Occupation). The
number of distinct values along these columns is given from Example 2 as D � 4 � 108.
Here the size of the universal table is n � 6 �109, that is, equal to the world population.
Since D � n, we use Theorem 1 and find that the expected fraction of rows with singleton
occurrence is bounded above by D�en � 4 � 108�2�7 � 6 � 109 � 0�025. Thus these
columns almost certainly do not form even a 0�05 quasi-identifier as 0.025 is an upper
bound on the expected fraction of singletons over all possible probability distributions
over quasi-identifier values.

We now provide a simple test to decide whether a combination of attributes forms a
potentially dangerous quasi-identifier, that is, say � 
 0�5.

Theorem 3. Given a universe of size n, a set of attributes can form an �-quasi-identifier
(where 0�5 � � � 1) if the number of distinct values along the columns, D � n

ln(1��) .

Proof (of theorem 3). Note that D � n. If not, then, by Theorem 1, the maximum
expected fraction of rows taking unique values is D�en � 1�e � �.

From Theorem 2, the maximum expected fraction of rows taking unique values along
the columns with D distinct values is e�n�D. For the the set of rows to form an �-quasi-
identifier, this fraction must be larger than �. Thus, e�n�D � �, which implies that
D � n

ln(1��) .
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2.1 Distinct Values and Quasi-identifiers

In this section, we have provided an interesting connection between whether a set
of columns forms a quasi-identifier and the number of distinct values assumed by
the combination of the columns. The main contributions of this association are as
follows.

1. We provide a fast and efficient technique to test whether a set of columns forms
a quasi-identifier. However there may be false positives. A set of columns sig-
nalled as a probable � quasi-identifier may only be a � quasi-identifier for some
� � �.

2. We do not assume anything about the distribution on the values taken by the quasi-
identifier. The expected number of singletons is bounded by the expression pro-
vided in this section for all possible distributions over the values taken by the quasi-
identifier.

3. When a set of columns is declared not to be a quasi-identifier by the test in this
section, the set of columns is almost certainly not a quasi-identifier, that is, there is
a minuscule chance of false negatives.

3 Probabilistic Anonymity

In Sweeney’s anonymity model [35], every row of the dataset is required to be identical
with k other rows in the dataset along Q. In the following notion of anonymity, we insist
that each row of the anonymized dataset should match with at least k or more rows of
the universal table � along Q. Since � is represented in a probabilistic fashion, we
want this event to happen with high probability.

Definition 4. A dataset is said to be probabilistically (1 � �� k)- anonymized along a
quasi-identifier set Q, if each row matches with at least k rows in the universal table
� along Q with probability greater than (1 � �).

Our notion of anonymity is similar to that of [35] for an adversary who is oblivious,
that is, she is not really looking for some particular individuals, but is trying to do a join
on Q and checking if she is “lucky”. This kind of attack is quite a possibility in today’s
outsourcing scenarios where an attacker, say, from a call center, would want to know
identities in her client’s data without really knowing whom to look for. If an adversary
is looking for a particular individual in the anonymized dataset, then Sweeney’s model
(k-map [34]) would generally provide better privacy than our model for it would al-
ways yield k matches. For our model to work well against such an adversary, we need
to declare the original dataset itself as the universal table � and carry out anonymiza-
tion. Note that Sweeney’s original model of k-anonymity is oblivious of the universal
table �.

In what follows, we build on the strong connection between the number of distinct
values assumed by a set of attributes Q and its identity revealing potential that was dis-
covered in Section 2. Intuitively, it is clear from Theorems 1, 2 and 3 that the potency
of Q as a quasi-identifier would decrease if we reduce the number of distinct values
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assumed by Q. This is to be done with appropriate generalization. We borrow the fol-
lowing definition of generalization from [35] which has an excellent discussion on this
topic.

Definition 5. Generalization involves replacing (or recoding) a value with a less spe-
cific but semantically consistent value.

Example 5. The original ZIP codes {02138, 02139} can be generalized to 0213*,
thereby stripping the rightmost digit and semantically indicating a larger geographi-
cal area.

One way of looking at generalization is creating �� D partitions of the space of D
distinct values and choosing a representative for each partition. In fact, it would give
us k-anonymity if we could ensure that most of these partitions are represented by k or
more of their own members in the universal table� with high probability. To make this
work, let us suppose that we have a D�-partition of original D size space such that each
partition has probability 1�D� (or O(1�D�) to be precise). Given a � p1� p2� � � � � pD �

probabilities of the original D size space, such partitioning is certainly possible using
techniques we show in Section 4 for a single dimension. Now, we analyze below the
bound on D� that is necessary in order to ensure that most of these partitions are repre-
sented k or more times in � with high probability. Please recall that � has size n and
it is built by sampling with replacement.

Theorem 4. A data set is probabilistically (1 � �� k)-anonymized with respect to a uni-
versal table � of size n along the quasi-identifier Q if the number of distinct values
along Q, D� � n

k (1 � c) for some small constant c.

Before we proceed with the proof, please note that Theorem 4 provides a recom-
mendation for D�, the number of partitions of D size space of Q. If the probabilities
� p1� p2� � � � � pD � are known, then as per our earlier assumption, one could cluster
these probabilities such that D� equi-probable partitions are created. This concretizes
generalization which could be used by any data-holder for anoymizing its data before
release.

Proof (of theorem 4). Let us suppose that we have got a D�-partition of original D size
space of quasi-identifier Q such that each partition has probability 1�D�. Let Xi denote
the indicator variable if 
 k rows in the universal table � are chosen from the ith

partition.

P[Xi � 1] �
n�

j�k

�
n
j

�
(

1
D�

) j(1 � 1
D�

)n� j

� 1 �
k�1�
j�0

�
n
j

�
(

1
D�

) j(1 � 1
D�

)n� j


 1 � exp(
�D�(n�D� � (k � 1))2

2n
)

(by Chernoff bounds [15])

� 1 � exp(
�(n � (k � 1)D�)2

2nD�
)�
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For 1 � � probability guarantee, we would like to have

1 � exp(
�(n � (k � 1)D�)2

2nD�
) 
 1 � ��

that is,
�(n � (k � 1)D�)2

2nD�
� ln��

This is true when,

0 � D�2
�

2nD�

k � 1

�
ln�

k � 1
� 1

�
�

� n
k � 1

�2
�

that is,
D� � n

k � 1
(1 � x �

�
x2
� 2x)�

where

x �
�ln�
k � 1

�

This implies that

D� � n
k

(1 � c)

is sufficient for some small constant c.

Example 6. Let � be the U.S. Census Table of size n � 3 � 108. Consider the columns
Q � (Gender, Date of Birth, Zipcode). By Example 2, D � 4�109. According
to Theorem 4, a dataset is (0�9� 100) anonymized along Q with respect to � if we make
D� partitions (or generalizations) of the D size space where (n�125 � n�100 � (1 � c) )

D� � n
125

� 2�4 � 106�

Thus, we have to reduce the number of possibilities for Q by a factor of D�D� � 1700.
Consider the following generalization (Gender, Half-year of Birth, First
Four Digits of Zipcode). Now D�

� d�

1 � d�

2 � d�

3. d�

1, the number of distinct
values of Gender, is 2. d�

2 is 60 � 2 � 120, and d�

3 � 104. Therefore, D�
� 2�4 � 106.

This should be good enough to make each row 100-anonymous with probability at least
0�9.

3.1 Privacy vs Utility

Note that (Gender, Half-year of Birth, First Four Digits of
Zipcode) was just one of many different ways we could have compressed the D size
space in Example 6 by factor 1700. Ideally, we would like to devise this generaliza-
tion such that there is little or no loss in the data utility. We frame this problem as an
optimization problem below where the goal is to retain maximum utility given privacy
constraints.

Let there be m columns � C1�C2� � � � �Cm � that need generalization and w1�w2� � � � �

wm be their respective weights giving their relative importance [31, 32]. We aim to
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anonymize this multi-column database so that maximum utility is retained in the prob-
abilistically k-anonymized output.

Let d�

1� d
�

2� � � � � d
�

m be the number of distinct values along columns C1�C2� � � � �Cm

after probabilistic k-anonymization. Then, by Theorem 4,

m�
i�1

d�

i �
n
k

(1 � c) � D��

Let us suppose that the quantile based anonymization from Section 4 is used. Thus,
d�

i different quantiles are used along the column Ci. Then, the rank difference of the

transformation (from Section 4) is approximately ( n
d�

i
)2 � d�

i �
n2

d�

i
.

The sum of the distortion along all columns weighted by the column weights is,
therefore, n2(

�m
i�1

wi
d�

i
). Minimizing this is equivalent to minimizing

�m
i�1

wi
d�

i
subject to�m

i�1 d�

i � D�. For a fixed value of product, the sum of numbers is minimized when all
the numbers are equal. Therefore,

w1

d�

1

�

w2

d�

2

� � � �
wm

d�
m
�

1
d

(say)�

Therefore, d�

i � d � wi �1 � i � m. The product condition implies,
�m

i�1 d�

i �

dm�m
i�1 wi � D�. Therefore,

d � (
D��m
i�1 wi

)1�m�

d�

i � (
D��m
i�1 wi

)1�m � wi� (1)

Note that if d�

i is less than the number of distinct values in column i initially, say
di, it suggests applying an approach like quantiles proposed here on column Ci. If d�

i is
greater than the number of distinct values in column Ci initially, say di, then the column
Ci is left untouched. The number of distinct elements for other columns can be recalcu-
lated (and increased) after this. That is, if d�

i � di, then the optimization problem over
all other variables is first solved after column Ci is eliminated, i.e. Maximize

�m
j�1� j�i

w j

d�

j

subject to
�m

j�1� j�i d�

j � D��di.

Example 7. Suppose that we want to probabilistically (0�9� 100)-anonymize a dataset
with 3 columns (Gender, Date of Birth, Zipcode) and all columns are equally
important, that is , they have equal weight.

As worked out in Example 6, each row is given 100-anonymity with probability at
least 0�9 if D�

� 2�4 � 106. As all 3 columns have equal weight, we get d�

1 � d�

2 � d�

3 �
133. However Gender has only 2 � d�

1 values. This means we have to leave it un-
touched and work with the remaining two attributes. That gives d�

2 � d�

3 � 1�2 � 106.
Since both the columns have equal weight, we get d�

2 � d�

3 � 1�1 � 103. As d�

2 �

1�1 � 103 is approximately 60 (years)�12 (number of months per year), Date of
Birth is approximated to the month of birth. Also the number of distinct values of
Zipcode being O(103) implies that the last two digits of Zipcode are starred out.
Thus the anonymization produced is (Gender, Month of Birth, First Three
Digits of Zipcode).
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Note that this anonymization was entirely worked out in constant time in the above
example. For general case, where the number of columns is m, it would require O(m2)
time. Previous techniques to provide anonymity were not only NP-hard in the input
size (that means it took exponential time in the dataset) [26,5] but even approximations
required many passes over the database [5,6]. [23] required passes to be exponential in
the number of columns to be anonymized as the lattice developed there took exponential
time to be built.

Example 8. According to HIPAA [19], each person must be anonymized in a crowd of
k � 20� 000 � 2 � 104 people. Now, suppose we want to anonymize a medical records
table with columns (Gender, Age (In Years), Zipcode, Disease).

As always, the U.S. Census Table is the universal table � with n � 3 � 108 rows.
The quasi-identifier is (Gender, Age (In Years), Zipcode). As the number of distinct
values of Gender and Age are 2 and 100 respectively, the number of distinct values
of Zipcode allowed is approximately 3 � 108�((2 � 104) � 2 � 100) � 75 by Theorem 4.
Therefore, Zipcodemust be anonymized to its first two digits and should only indicate
the State.

3.2 The Curse of Dimensionality

As the number of dimensions (columns) increase, the number of distinct values per
column on anonymization decrease rapidly. For example, consider a database table with
25 columns. The aim is to anonymize the table so that 10-anonymity is achieved for the
U.S. population of size 3 � 108. Further suppose that all the columns are given equal
weight (importance). Applying Theorem 4 and the Multiple Domain Assumption, the
number of distinct values per column can be obtained to be roughly 2. Thus all values
in a column are generalized to two intervals or converted to two types of values. This
hints at reduced data utility measured by any reasonable metric.

This phenomenon was also observed as the curse of dimensionality on k-anonymity
[3]. However, we must notice that the previous analysis should only be applied to
columns that are available publicly. For example, in the Adults database [10], columns
capgain, caploss, fnlwgt and income can be assumed to be sensitive columns
that are present only in the database itself and are not available for an external join.

3.3 Distinct Values and Anonymity

In this section, we have provided an interesting connection between the number of
distinct values taken by a combination of columns and the anonymity it can offer. The
main contributions of this association are as follows.

1. This association between distinct values and anonymity guarantee results in an easy
technique to obtain a k-anonymized dataset. Merge similar distinct values taken by
a column so that the number of distinct values assumed by the column is reduced.
The appropriate reduction in the number of distinct values leads to the conversion
of a quasi-identifier into k-anonymous columns. As explained in Section 3.1, this
would also help retain much of data utility since it minimally distorts ranks. We
shall discuss this angle in more detail in the next section.
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2. It also helps in coming up with the right kind of generalization for publicly known
attributes so that published database can conform to HIPAA Privacy Rule.

4 1-Dimensional Anonymity

The results of Section 3 provide us with the right amount of generalization for each
publicly known attribute in order to achieve probabilistic k-anonymity for the entire m
column dataset. From any particular attribute point of view, the suggested generaliza-
tion tries to create appropriate number of buckets (or partitions) in its distinct values
space so that each bucket has k�  k individuals from the universal table �. Thus, in
nutshell, there are m 1-dimensional Sweeney’s k-anonymity problems, of course, each
with different value of k. Before we proceed further, we will like the reader to take a note
of this strong underlying connection between our notion of probabilistic k-anonymity
and Sweeney’s notion of k-anonymity.

Now k-anonymity for multiple columns is known to be NP-hard [26, 5, 23]. Thank-
fully we found that this is not the case for a single column. In the remainder of this
section, we showcase various algorithms that help achieve 1-dimensional k-anonymity
while retaining maximum possible data utility.

4.1 Numerical Attributes

We start out with algorithms for numerical attributes. Note that they are also applicable
to attributes of type date and Zipcode.

Definition 6 k-Anonymous Transformation. A k-anonymous transformation is a
function, f , from S � �s1� s2� � � � sn� to S such that �s j : �� f �1(s j)�� 
 k or �� f �1(s j)�� � 0,
that is, at least k elements are mapped to each element (which has some element mapped
to it) in the range.

Example 9. Consider S � �1� 12� 4� 7� 3�, and a function f given by f (1) � 3� f (3) �
3� f (4) � 3� f (7) � 7 and f (12) � 7. Then f is a 2-anonymous transformation.

Dynamic Programming. Our goal is to find a k-anonymous transformation that mini-
mizes, say, the maximum cluster size amongst all clusters [37], or the sum of distances
to the cluster centers [22], or the sum over all clusters the radius of the cluster times
the number of points in the cluster [6]. All these problems are known to be NP-hard
for a general metric space. However, for points in a single dimension, we showcase an
optimal polynomial time algorithm based on dynamic programming. The details of the
algorithm can be found below.

If not already sorted, first sort the input and suppose that it is p1 � p2 � � � � � pn.
For 1 � a � b � n, let Cluster(a� b) be the cost to cluster elements pa� � � � � pb.

Consider the optimal clustering of the input points. Note that each cluster in the
optimal clustering contains a set of contiguous elements. Moreover, each cluster is of
size at least k by the k-anonymity requirement. Since any cluster of size 
 2k can be
broken into two contiguous clusters of size at least k each and that would reduce the
clustering cost, the size of a cluster in the optimal clustering will be at most 2k � 1.
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The optimal clustering of the n input points is, therefore, the optimal clustering of
points p1� p2� pn�i and one single cluster of the points (pn�i�1� � � � � pn), where i is the
size of the last cluster. Note that k � i � 2k by the previous analysis. Therefore we find
the optimal clustering by trying out all possible values of i � �k� k� 1� � � � � 2k� 1�. Now,
the dynamic programming recursive equation is given by

ClusterCost(1� n) � mink�i�2k Cost(ClusterCost(1� n � i), Cluster(n � i � 1� n)).

Here Cost(A� B) is the sum for a metric like the k-median [22] or cellular [6] metric
which minimizes the sum of costs over all clusters. It is the maximum function for
the k-center metric [37] which minimizes the maximum of cluster sizes amongst all
clusters.

ClusterCost(a� b) is initially set to� if b�a�1 � k. For b�a�1 
 k, ClusterCost(a� b)
is initially set to the cost of clubbing all points into a single cluster, that is, Cluster(a� b).

Cost Analysis. This algorithm needs input in the sorted order. Therefore, its time
complexity has two components: 1. Time taken for sorting the input, and 2. time re-
quired for the dynamic programming. For input of size n points, sorting takes O(n log n)
time. The dynamic programming part requires time O(nk) as evaluating ClusterCost
(1 � � � i) takes O(k) time for each i. Thus, overall time complexity is O(n(k � log n)).

Quantiles. The algorithm from previous section requires sorting of the input. For large
n, this would entail external sort. It is not very desirable in practice. In this section,
we explore efficient algorithms that cluster the data in time required to make 1 or 2
sequential passes over the data and use very little extra memory.

Definition 7 Rank. Given a set of distinct elements S � �s1� s2� � � � � sn�, the rank of an
element si is r if si is the rth largest element in the set.

For a multi-set containing duplicates, different occurrences of the same element are
given consecutive ranks.

Example 10. Among elements S � �1� 12� 4� 7� 3�, 7 has rank 4, while 3 has rank 2.

Definition 8 Rank difference of a transformation. Given a set S � �s1� s2� � � � � sn� of
n numbers, and a k-anonymous transformation f , let �(si) represent the rank of element
si. Then, the rank difference incurred by si under the transformation f is defined as
��( f (si))��(si)�. The rank difference of the transformation f is the sum of rank difference
over all elements, that is,

�n
i�1 ��( f (si)) � �(si)�.

Example 11. For set S � �1� 12� 4� 7� 3�, �(1) � 1, �(12) � 5, �(4) � 3, �(7) � 4 and
�(3) � 2. For f from Example 9, �( f (1)) � 2, �( f (12)) � 4, �( f (4)) � 2, �( f (7)) � 4,
and pi( f (3)) � 2. The rank difference of this transformation is 3.

Definition 9 Quantile Transformation. Suppose that n � qk � r, where 0 � r � k.
Then, the quantile transformation is a k-anonymous transformation that partitions the
elements into q contiguous groups of size (k � �r�q�) or (k � �r�q�) each. All elements
in a group are mapped to the median element of the group.

Theorem 5. The quantile transformation has the minimum rank difference among all
k anonymous transformations.

Proof. The proof is by a simple greedy argument.
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Efficient Approximate Quantiles using Samples. It is possible to implement the exact
quantile transformation. But finding the exact median(quantile) in p passes over the data
requires n1�p memory [27]. Thus, to get the exact quantile transformation in 2 passes,
would require 	(

�
n) memory.

For those who work with smaller memory and/or look for something easier to imple-
ment, we sketch a sampling based approach here. We maintain a uniform sample of size
s � 1

�2 log( 1
Æ
) using Vitter’s sampling technique [38]. The rank t element in the original

set is approximated by the rank st�n element in the sample, where n is the size of the
original dataset over which the sample is maintained. This element has rank between
t� (
n) and t� (
n) in the original data with probability greater than (1�Æ) if the sample
size s is chosen as given above [25]. For example suppose that we maintain a uniform
sample of 100 elements out of a total 100� 000 elements. Then the 5� 000th element in
sorted order among the 100� 000 elements can be approximated well by the 5th element
in sorted order from amongst the sample of 100 elements.

4.2 Categorical Attributes

In the previous sub-section, we discussed how to create appropriate buckets or cate-
gories for numerical (ordered) attributes. But many times, there is an attribute with
no intrinsic ordering among its value-set. Such an attribute is called as a categorical
attribute.

For categorical attributes we create a layered tree graph as explained. The first layer
consists of a node for each category value. The next layer groups together nodes that
generalize into one general categorical value, so that they form a single node. This is set

                  

Country:USA

50 States

AL AK CA WY

58 Counties

Alameda

Cities

Fig. 2. A Categorical Attribute

to be the parent of the generalized values. This is repeated till there is a single category.
Consider for example location information shown in Figure 2. Zipcodes are generalized
to cities which are generalized to counties to state and finally to country. The top three
levels of the generalization hierarchy are shown. To anonymize this dataset so that
there are d distinct values, the generalization is carried till the level that there are d
values. For example, to generalize location so that there are 50 different values, the
state information would be retained. However to generalize it to 3000 distinct values,
the county information would be retained.
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5 Experiments

5.1 Quasi-identifiers

We counted the number of singletons in the Adult Database available from the UCI ma-
chine learning repository [10]. The Adult Database has 32561 rows with 15 attributes,
we considered 10 of them and dropped the remaining 5. The dropped attributes are sen-
sitive attributes (not quasi-identifiers): fnlwgt, capgain, caploss, income and
the attribute edunumwhich is equivalent to the attribute education. In our experiments,
we varied the size of the attribute set Q under consideration from 1 to the maximum of
10. The table in Figure 3 shows some of the results that we obtained.

Row Size A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 S F1 D F2 k-Anon
60 8 15 7 14 6 5 2 20 40

1 1 x 2 6.1 ∗ 10−5 60 7.4 ∗ 10−8 5 ∗ 106

2 2 x x 986 0.03 1200 1.48 ∗ 10−6 2.5 ∗ 105

3 3 x x x 65 0.002 600 7.4 ∗ 10−7 5 ∗ 105

4 4 x x x x 5056 0.16 1 ∗ 105 1.2 ∗ 10−4 3 ∗ 103

5 4 x x x x 3105 0.095 2.7 ∗ 105 3.3 ∗ 10−4 1.1 ∗ 103

6 4 x x x x 7581 0.23 6.7 ∗ 105 8.3 ∗ 10−4 450
7 4 x x x x 1384 0.043 6.7 ∗ 104 8.3 ∗ 10−5 4.5 ∗ 103

8 5 x x x x x 7659 0.235 4 ∗ 106 4.9 ∗ 10−3 75
9 5 x x x x x 5215 0.16 2.8 ∗ 105 3.4 ∗ 10−4 1 ∗ 103

10 5 x x x x x 12870 0.40 8 ∗ 105 9.9 ∗ 10−4 380
11 5 x x x x x 10402 0.32 5.4 ∗ 106 6.7 ∗ 10−3 55
12 10 x x x x x x x x x x 24802 0.76 33 ∗ 109 0.99 1

Size = Number of columns that make the quasi-identifier, A1 = Age, A2 = Work class, A3 =
Education, A4 = Marital status, A5 = Occupation, A6 = Relationship, A7 = Race, A8 = Sex,
A9 = Hours per week, A10 = Native country, S = Number of singletons in the current table, F1=
Fraction of singletons using the table itself = S/32561, F2=Fraction of singletons using Figure 1
and n � 3 � 108 for US population, k-Anon= Anonymity parameter for the published database
= n�D.

Fig. 3. Quasi-Identifiers on the Adult Dataset

Labels A1, A2, � � �, A10 denote the 10 columns of the table. The first row gives
the number of distinct values each attribute A1, A2, � � �, A10 takes. All other rows
(which are labeled with row numbers from 1 to 12) of the table represent publishing the
projection of the table along the columns marked ‘x’. For example, the row 1 represents
publishing the database projected on the Age (A1) column while the row 12 represents
publishing all 10 columns in the database. The column Size gives the number of ‘x’
marks in each row, that is, the number of columns that constitute the quasi-identifier Q
under consideration.

The column S is the number of rows uniquely identified by the projection of these
columns, that is, the number of rows uniquely identified in the published projection.
For example, for row 2, where A1 and A9 are the attributes of projection, S = 986 is
returned by the following SQL statement in MS Access:
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SELECT A1, A9 FROM T
GROUP BY A1, A9
HAVING count(*)=1

F1 is the fraction of rows uniquely identified, given by S�32561 where S is the num-
ber of singletons while 32561 represents the total number of rows in the database table.
For row 2, F1 � 0�03. Some previous definitions of quasi-identifiers [40] measured a
quasi-identifier as a set of columns that have a large fraction of unique rows. Thus,
F1 is used as a measure of quasiness. This does not model the external table present
with the adversary. For example, by this definition, A1 and A9 would together be a
0�03-quasi-identifier.

D is the product of the domain sizes of the attributes marked ‘x’ in the row. By Mul-
tiple Domain Assumption, it is the size of the distinct values space for that combination
of columns. For example, for row 3, D � 60 � 5 � 2 � 600.

F2 captures the notion of quasiness as proposed in Section 2. It is given by f (D�n)
shown in Figure 1. Here, D is set to be equal to the value from column D, and n � 3�108,
the size of US population. Please recall that, by Theorems 1 and 2, f (D�n) � D�en for
D � n and e�n�D for D 
 n. For all but the last row of the table, D � 3 � 108, hence
F2 �

D
2�7�3�108 , for the last row F2 � e�3�108�D.

k-Anon is approximately the probabilistic k-anonymity obtained from the published
database. Based on the result of Theorem 4, it is set to n�D, where n � 3 � 108, the size
of the US population. When D exceeds n, it is set to 1.

Suppose we are allowed to publish a set of columns with the condition that all 0�2-
quasi-identifiers are to be suppressed. If we only consider the entries of the table and
look at those projections where at least 0�2 fraction of the rows are unique, then the
projections indicated by rows numbered 6� 8� 10� 11 and 12 cannot be published. This is
because their F1 values exceed 0�2.

In fact, our real worry is that � 0�2 fraction of the rows should not get uniquely
identified after taking an external join with the universal table �. Then, only row 12
qualifies as a possible 0�2-quasi-identifier as only its F2 value exceeds 0�2. Note that,
from Theorems 1 and 2, there is a minuscule chance of false negatives, that is, rows
1 � 11 are unlikely to be 0�2-quasi-identifiers.

Row 12 needs a closer look since 0�99 is only an upper bound on the expected frac-
tion of unique rows. It may be noticed that many combinations are rare and do not
occur. In our example, two attributes A9 and A10 are special. A9 may be represented
with only 5 distinct values since the exact hours per week of an individual may not be
known and A10 is not uniformly distributed. Such a case by case analysis of the differ-
ent attributes may bring down the distinct values, D, and hence the fraction of distinct
rows. Thus, it can help improve the estimate of quasiness, say, from a 0�99 fraction to
(probably) a fraction lower than 0�2. In such a case, row 12 would be a false positive.

5.2 Anonymity Algorithms

We implemented sampling based approximate quantile algorithm (from Section 4.1) as
a technique in a commercial data masking tool, MASKETEERTM [36], used at Tata
Consultancy Services. Our technique only required 400 lines of code to be added to
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the tool, because of the extensibility features available in the tool. The tool was run
on an Oracle database containing 250� 000 rows of a table from a real bank, which
was a customer of the tool vendor. The database table was about 1GB in size and had
261 columns. We also repeated our experiments on the public use microdata sample
(PUMS) [2] provided by the U.S. Census Bureau. This dataset was given in a flat file
format as input to the data masking tool. The experiments were run on a machine with
2.66GHz processor and 504 MB of RAM running Microsoft Windows XP with Service
Pack 2.

Scaling with the Dataset Size
We studied how the running time of the quantile algorithm for masking a single col-
umn changes as the number of rows in the database table is varied. We measured the
time required to mask various fractions of the table, the entirety of which contains
250� 000 rows. The time required to mask this single numeric column with k � 10� 000
anonymity (so that there are 25 different quantiles to which the data is approximated)
increased linearly to a total of about 10 seconds for the entire column. A straight line
with almost exactly identical slope and coordinates was obtained for the PUMS [2]
dataset.

Fig. 4. Time taken for varying number of rows

Scaling with the Number of Columns Masked
We studied how the running time of the quantile algorithm for masking multiple
columns varies as the number of columns to be masked is varied. For this experiment
too, we used the table with 250� 000 rows and 261 columns. As each column is indepen-
dently anonymized, the time taken increases linearly as the number of columns being
anonymized increases. Previous algorithms [23] had an exponential increase in the time
taken for anonymization as the number of columns increased as the lattice created was
exponential in the number of columns being anonymized.

The time taken to anonymize 10 columns of data with 250� 000 rows was approxi-
mately 100 seconds. This is almost an order of magnitude improvement over the previ-
ous algorithm [23]. The results on the PUMS dataset were similar.
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Fig. 5. Time taken for varying number of columns

Fig. 6. Time taken for varying number of buckets

Scaling with the Anonymity Parameter
The implemented algorithm does a binary scan over all buckets to find the bucket clos-
est to each data item. The time required to anonymize a data value, therefore, loga-
rithmically increases as the number of buckets increases (or the value k of anonymity
parameter decreases). If b is the number of buckets and n the number of rows, then the
time to anonymize is nlog(b). The time taken to read n rows from disk is nC where C
is a large constant3. The total time taken is, therefore, n(C � log b) where C  log(b).
This explains the shape of the curve in Figure 6. Here nC � 10 seconds and the log(b)
term explains the slight increase from 0 to 500 buckets.

Tradeoff between Privacy and Utility
We use the term error for information loss introduced by the anonymization process. We
studied how the error introduced in a column as a result of k-anonymization varies with

3 Transfer rate of 50MBps is not uncommon for harddisks today. So if each record were to be of
size 1KB, then C � 1�50000.
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the anonymity parameter k. Let xi be the original value of the ith row. Let x
�

i be its value
after k-anonymization. Let us use (x

�

i � xi)2 as the error introduced for row i as a result
of k-anonymization. The total error introduced over n rows is Error �

�n
i�1(x

�

i � xi)2.

Let x̄ �
�n

i�1 xi

n . If all x
�

i are constrained to be identical (corresponding to anonymity with
a single bucket), then x̄ gives the minimum error according to the above metric, i.e. it
gives MinError � Minx

�n
i�1(x � xi)2

�

�n
i�1(x̄ � xi)2. We, therefore, normalize the

error as Error/MinError.
The curve is plotted in Figure 7 where the normalized error is plotted on the y-axis

while the number of buckets, b � � n
k �, is plotted on the x-axis. An almost identical curve

was obtained for the PUMS dataset. The curve very closely follows the curve 1
b2 . This

could be proven analytically.
Thus, for given n and k, we find that the identity disclosure risk is � 1�k (for “join”

class of attacks) and the error introduced in data is � k2�n2. We may, therefore, boldly
quantify the privacy provided by k-anonymization as p � 1�1�k and the utility retained
as u � 1 � k2�n2 implying the following privacy-utility trade-off equation.

(1 � p)2(1 � u) � 1�n2 (a constant)�

Note that, the fact that we used sum square errors, instead of sums of absolute values
of errors explains the square term above.

Fig. 7. Tradeoff between privacy and utility

6 Related Work

One of the earliest definitions of quasi-identifier can be found in Dalenius [16]. [35,34]
and [23] use a similar definition.

Samarati and Sweeney formulated the k-anonymity framework and suggested mech-
anisms for k-anonymization using the ideas of generalization and suppression [29,
35, 34]. Subsequent work has shown some NP-hardness results [26, 4, 6] and that has
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inspired many interesting heuristics and approximation algorithms [21, 39, 26, 9, 4, 23,
24, 6]. All of this work assumes that quasi-identifier attribute sets are known based on
specific knowledge domain.

The basic theme of k-anonymity model is to hide an individual in a crowd of size k or
more. A similar intuition is pursued by Chawla et al in [13] who, in fact, manage to con-
vert it into a precise mathematical statement. They not only give a definition of privacy
and its compromise for statistical databases, but also provide a method for describing
and comparing the privacy offered by specific sanitization techniques. They also give
a formal definition of an isolating adversary whose goal is to single out someone from
the crowd with the help of some auxiliary information z. This work is further extended
in [14] where Chawla et al study privacy-preserving histogram transformations that
provide substantial utility.

There is a wide consensus that privacy is a corporate responsibility [20]. In or-
der to help and ensure corporations fulfil this responsibility, governments all over the
world have passed multiple privacy acts and laws, for example, Gramm-Leach-Bliley
(GLB)Act [18], Sarbanes-Oxley (SOX) Act [30], Health Insurance Portability and Ac-
countability Act (HIPAA) [19] Privacy Rule are some such well known U.S. privacy
acts. In fact, HIPAA recommends the following safe-harbor method of de-identification
in which it provides clear guidelines for sanitizing quasi-identifiers including date types,
Zipcode, etc. For 20� 000 anonymity, HIPAA advises to retain essentially only the
State information in Zipcode and year information in Date of Birth which is
quite inline with what we concluded in Examples 6, 7 and 8 based on our analysis. The
de-identification excerpt from the HIPAA privacy rule is provided below.

“The following identifiers of the individual or of relatives, employers, or household
members of the individual must be removed to achieve the ”safe harbor” method of
de-identification: (A) Names; (B) All geographic subdivisions smaller than a State, in-
cluding street address, city, county, precinct, zip code, and their equivalent geocodes,
except for the initial three digits of a zip code if, according to the current publicly
available data from the Bureau of Census (1) the geographic units formed by combin-
ing all zip codes with the same three initial digits contains more than 20,000 people;
and (2) the initial three digits of a zip code for all such geographic units containing
20,000 or fewer people is changed to 000; (C) All elements of dates (except year) for
dates directly related to the individual, including birth date, admission date, discharge
date, date of death; and all ages over 89 and all elements of dates (including year)
indicative of such age, except that such ages and elements may be aggregated into a
single category of age 90 or older; (D) Telephone numbers; (E) Fax numbers; (F) Elec-
tronic mail addresses: (G) Social security numbers; (H) Medical record numbers; (I)
Health plan beneficiary numbers; (J) Account numbers; (K) Certificate/license num-
bers; (L) Vehicle identifiers and serial numbers, including license plate numbers; (M)
Device identifiers and serial numbers; (N) Web Universal Resource Locators (URLs);
(O) Internet Protocol (IP) address numbers; (P) Biometric identifiers, including fin-
ger and voice prints; (Q) Full face photographic images and any comparable images;
and (R) any other unique identifying number, characteristic, or code, except as per-
mitted for re-identification purposes provided certain conditions are met. In addition
to the removal of the above-stated identifiers, the covered entity may not have actual
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knowledge that the remaining information could be used alone or in combination with
any other information to identify an individual who is subject of the information. 45
C.F.R. §164.514(b). ”

7 Conclusions

In this paper, we provided the first formalism and a practical technique to identify
a quasi-identifier. Along the way we discovered an interesting connection between
whether a set of columns forms a quasi-identifier and the number of distinct values
assumed by the combination of the columns.

Then we defined a new notion of anonymity called as probabilistic anonymity where
in we insist that each row of the anonymized dataset should match with at least k or
more rows of the universal table � along a quasi-identifier. We observed that this new
notion of anonymity is similar to the existent k-anonymity notion in terms of privacy
guarantees and is sufficiently strong for many real life scenarios involving oblivious
adversaries. Building on our earlier work, we found an interesting connection between
the number of distinct values taken by a combination of columns and the anonymity
it can offer. This allowed us to find an ideal amount of generalization or suppression
to apply to different columns in order to achieve probabilistic anonymity. We worked
through many examples and showed that our analysis can be used to make a published
database conform to privacy rules like HIPAA.

In order to achieve the probabilistic anonymity, we observed that one needs to solve
multiple 1-dimensional k-anonymity problems. We proposed many efficient and scal-
able algorithms for achieving 1-dimensional anonymity. Our algorithms are optimal in
a sense that they minimally distort data and retain much of its utility.
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Abstract. In this paper we study privacy preservation for the publica-
tion of search engine query logs. We introduce a new privacy concern,
website privacy as a special case of business privacy. We define the possi-
ble adversaries who could be interested in disclosing website information
and the vulnerabilities in the query log, which they could exploit. We
elaborate on anonymization techniques to protect website information,
discuss different types of attacks that an adversary could use and pro-
pose an anonymization strategy for one of these attacks. We then present
a graph-based heuristic to validate the effectiveness of our anonymiza-
tion method and perform an experimental evaluation of this approach.
Our experimental results show that the query log can be appropriately
anonymized against the specific attack, while retaining a significant vol-
ume of useful data.

1 Introduction

Query logs are very rich sources of information, from which the scientific commu-
nity can benefit immensely. These logs allow among other things the discovery
of interesting behavior patterns and rules. These can be used in turn for so-
phisticated user models, for improvements in ranking, for spam detection and
other useful applications. However, the publication of query logs raises seri-
ous and well-justified privacy concerns: It has been demonstrated that naively
anonymized query logs pose too great a risk in disclosing private information.

The awareness towards privacy threats has increased by the publication of the
American Online (AOL) query log in 2006 [1]. This dataset, which contained
20 million Web queries from 650, 000 AOL users, was subjected to a rather
rudimentary anonymization before being published. After its release, it turned
out that the users appearing in the log had issued queries that disclosed their
identity either directly or in combination with other searches [2]. Some users
even had their identities published along with their queries [3]. This increased
the awareness to the fact that query logs can be manipulated in order to reveal
private information if published without proper anonymization.

Privacy preservation in query logs is a very current scientific challenge. Some
solutions have been proposed recently [4,5]. Similarly to the general research
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advances in privacy preserving data mining, they refer to the privacy of persons.
Little attention has been paid to another type of privacy concern, which we
consider of no less importance: website privacy or, more general, business privacy.

In this work we argue that important and confidential information about web-
sites and their owners can be discovered from query logs and that naive forms of
URL anonymization, as in [2], are not sufficient to prevent adversarial attacks.
Examples of information that can be revealed from query logs include accesses
to the site’s documents, queries posed to reach these documents and query key-
words that reflect the market placement of the business that owns the site. Such
pieces of information are confidential, because websites serve as channels for ad-
vertisement, communication with potential customers and often sales to them.
Hence, the traffic recorded in them delivers a picture of customer-company in-
teraction, possibly for the whole product portfolio. A thorough analysis of this
traffic with a data mining method may then deliver information like insights on
the effectiveness of advertising campaigns, popular and less popular products,
number of successful and failed sale transactions etc.

One may argue that a site’s traffic is only recorded at the site’s server and
therefore not public. However, the traffic delivered to a website by major search
engines accounts for an important part of the site’s overall traffic. If this part is
undisclosed, it will be a very close approximation to the complete access log of
the website.

The protection of such confidential information is different from conventional
privacy preservation. One reason for this difference is that an adversary can
reveal confidential website information by aggregating a published query log
with other legally owned private data. In particular, consider an adversary which
is a company interested in disclosing information about its competitors. This
adversary could use its own background knowledge and the data of its own site
in combination to the published query log data, to infer the competitor’s private
data. This includes but is not limited to popular queries that reach both the
adversary’s site and that of the competitor. As shown in Fig. 1, the log of the
adversary can then be used to de-anonymize a part of the published query log.
Depending on the amount and quality of the information revealed, industrial
espionage or malicious intent could be argued by the affected parties against the
company that published the query log.

Although query log anonymization does not look promising in the near fu-
ture, especially from the user privacy perspective, we believe that reasonable
measures can be taken to preserve website privacy. By discussing some of the
existing threats and ways to prevent them, we can set a precedent for data min-
ing applications on logs, and future query log publishing, so that the resulting
information is inspected to prevent privacy leaks. Although we focus on website
privacy, we believe that our approach also contributes to user privacy, because
much of the sensitive information about users comes from assessing the pages
they have visited.

The contributions of our work are as follows: (1) We introduce a new pri-
vacy issue for query logs, website privacy. (2) We describe attacks that disclose
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confidential information from query logs, and ways to prevent them. (3) We pro-
pose a heuristic graph-based method that removes those parts of the log that
may lead to information disclosure and we validate it with experiments over real
data.

In the next section, we discuss related work on privacy preserving data mining
and on query log anonymization for the protection of user privacy. In section 3,
we introduce the problem of website privacy preservation through anonymization
and describe the types of adversaries that might attack a published query log.
Section 4 describes attacks and counter-measures. In section 5, we implement
a counter-measure with an heuristic that eliminates the vulnerable parts of the
query log. We validate this heuristic experimentally and report our results in
section 6. The last section concludes the study with a summary and a short
discussion of open issues.

2 Related Work

The rapid development of advanced techniques for data collection and propa-
gation, along with the fast growth of the Web, have increased the awareness to
the use of private information. This has lead to a new field of research in the
context of analyzing private or confidential information – the domain of privacy
preserving data mining [6].

Privacy preserving data mining aims at analyzing databases and data mining
algorithms, identifying potential privacy violations and devising methods that
prevent privacy breaches. Preventive measures involve the hiding or modifica-
tion of sensitive raw data like names, credit card numbers and addresses, and
the exclusion of any further type of sensitive knowledge that can be mined from
the database. It is important to note that many privacy preserving algorithms
are based on heuristics. This is because of the premise that selective data mod-
ification or sanitization is an NP-hard problem.

The evaluation of privacy preserving algorithms [6] is usually centered on the
following features: the performance of the proposed algorithm, the data utility
after the application of the technique, the level of uncertainty which the sensi-
tive information can be predicted, and the resistance to different data mining
techniques.

Some research on privacy preservation in databases deals with privacy pre-
serving data publishing that guarantees utility for data mining [7,8]. There are
studies on preventing adversarial data mining in relational databases, when data
fields are correlated [9]. Samarati and Sweeney proposed k-anonymity, in which
data is released in such a way that each query result (and each attempt for data
disclosure) returns at least k entities [10]. The principle of k-anonymity is quite
effective but it cannot be directly applied to data that expands across multiple
databases, as is the case of website privacy preservation.

In the context of Web mining, one of the prominent areas for privacy preser-
vation is the protection of user privacy in query logs of search engines. Among
the advances in privacy preserving Web mining, most relevant to our work are
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the studies of Kumar et al [4] and of Adar [5]. Kumar et al propose token-based
hashing for query log anonymization [4]; The queries are tokenized and a secure
hash function is applied to each token. However, the authors show how statistical
techniques can be used to disclose private information despite the anonymiza-
tion; they also show that there is no satisfying framework to provide privacy in
query logs [4].

In [5], Adar explains many aspects of the AOL query log problem, and shows
that traditional privacy preservation techniques cannot be applied in a straight-
forward way to protect privacy in a search log. Further, Adar argues that k-
anonymity is too costly for rapidly changing datasets like query logs. Then,
Adar proposes two user anonymization methods for query logs, which attempt
to balance log utility for research and privacy [5].

To the best of our knowledge ours is the first paper to address the issue of
privacy preservation for websites or businesses in query logs. As we will explain
in the next section, website privacy preservation is a different problem than
user privacy preservation. An anonymization method that preserves user privacy
would not necessarily guarantee website privacy.

3 The Website Anonymization Problem

For our analysis, we assume that a query log contains at least the same fields as
the one published by AOL [1]. Therefore we define our default query log format as:

{AnonID, Query, QueryTime, ItemRank, ClickURL}
In this signature, AnonID refers to an anonymized user ID, Query is the

search string, QueryTime is the time at which the query was issued, ItemRank
is the rank of the document clicked as a result of the query, and ClickURL is
the truncated URL of the document. In the AOL log, the URLs of documents
were truncated up to the website name ((e.g. www.example.org/somepage.html
became www.example.org). For our analysis, we also consider the hostname as a
central concept and define a website as a set of pages under the same hostname.
We use this signature as a reference basis but point out that it its vulnerability
with respect to user IDs has already been shown [5].

3.1 Challenges for Query Log Anonymization

Anonymizing query logs for data mining is very challenging for several reasons.
First, the attributes of the query log are not independent. An adversary may
use these dependencies to deduce the value of an anonymized field. For example,
queries in search engines are known to exhibit a remarkable frequency distri-
bution: Kumar et al exploited this property to decrypt anonymized queries by
studying the frequency and co-occurrence of terms in a non-anonymized reference
log [4]. Moreover, query logs have sequential records: Rearranging or shuffling
them for anonymization purposes would blur or eliminate important temporal
and order-dependent information, such as user sessions.
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Despite these observations, we should keep in mind that data mining focuses
mostly on extracting knowledge in pattern form and does not always require ex-
act values for each attribute: Such values can be replaced by an anonymized value
that preserves their distribution. However, for Web query mining, it is difficult
to determine which attributes should be anonymized or hidden: all attributes in
the log are of potential use – depending on the purpose of the analysis. Thus,
the minimization of the private information that could be disclosed by an adver-
sary while maintaining enough information for data mining becomes a complex
optimization problem. We address this problem in a conservative heuristic way:
We describe possible anonymizations, show attacks that can be used to disclose
private data despite these anonymizations and then we increase the level of in-
formation hiding to prevent information disclosure.

3.2 Types of Adversaries for Website Privacy Preservation

It is important to recapitulate the scope of our work here: we describe and focus
only on the problem of website privacy preservation or prevention of website ex-
posure (singling-out a website), when publishing or sharing search engine query
logs. This means that our goal is to prevent an adversary from obtaining con-
fidential information about traffic to websites, which have been recorded in a
search engine’s query logs. For this objective of website privacy preservation, we
identify two types of adversaries:

1. General Adversary: This type of adversary is “just” trying to discover
useful information about as many websites as possible, without any partic-
ular site in mind. This type of adversary might show up as a search engine
optimization company or other institution that performs market studies.

2. Adversarial Competitor: This type of adversary is a website or company
that tries to disclose information about its competitors using the query log.
In many cases, this adversary has already some information about the mar-
ket share, portfolio and activities of the competitors, and can impute this
background knowledge upon the anonymized log to de-anonymize it. One of
the most important pieces of data that this adversary can exploit is its own
query log, which can be used to recreate pieces of the anonymized query log.

3.3 Data Sources in the Website Privacy Preservation Problem

The query log is not the sole data source available to an adversary. We enumerate
here the data sources which might be combined to assess additional information
or disclose private data. The sources are depicted in Fig. 1. Some of them may
be publicly available, while others may be private. They include:

1. An anonymized search engine query log: This is the published log.
2. Actual search results for queries from a search engine: This information is

available to each user issuing a query. The results may come from the same
search engine as the log or from a different one, which has similar document
coverage.
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Fig. 1. Different data sources involved in query log privacy preservation

3. The access log of a given site: This is private to the owner of the site. The
log contains clicks from external search engines. It is quite straightforward
to reconstruct the origin of a click from the click’s referer1 in a conventional
access log. An adversarial competitor will have such a log for its own website.

Example 1. To illustrate the challenges of combining sites for data mining, let
us consider an on-line computer hardware store “Site A”. Site A knows that the
most popular queries used to reach it are: refurbished computer, cheap notebook,
laptop, memory and desktop computer. Site A has access to a published search
engine query log (such as the AOL log), and it wants to discover as much infor-
mation as possible about its competitors. It first assumes that its competitors
are reached via the same queries, which form an initial list of keywords L0. This
initial list can be expanded by searching for the URLs of Site A’s most important
competitor “Site B” in the query log. This allows Site A to obtain additional
keywords from Site B, such as electronics store, portable computers and computer
deals. The result is an enhanced list of keyword terms L1.

Next, Site A issues the queries in L1 online to a search engine and discovers
which other sites are returned in each result-set. Site A discovers that its com-
petitors (next to Site B) are Site C and Site D. Having found out these additional
competitor sites, Site A can now extract all traffic data for each of them from
the published query log. Among other things, Site A can discover which site has
more visitors and more hits from the search engine, which queries reach other
sites but do not reach Site A etc.
1 This is a misspelling of “referrer”. It is the official term used in HTTP specifications.
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With this information, Site A can now advertise exactly on the most popular
keywords used by people reaching sites B, C and D, or it may focus on only one
of the competitors in a similar way. Most importantly, Site A can make business
decisions based on information that was not available before the disclosure of
the log. �

4 Attacks and Measures Against Website Disclosure

In this section we discuss an incremental approach to anonymize a query log.
In each step, we show how an adversary could go about to discover information
about a certain site or site-related information (i.e. who are its competitors).
In our analysis, we consider three main types of attacks, which we define as
attacks on vulnerable queries (defined in subsection 4.2 below), attacks using a
website log and attacks with user information. Although we do not attempt to
identify all possible vulnerabilities, we show that several weak points exist and
that different techniques can be used to prevent them.

4.1 Structure of the Anonymized Query Log

As explained before, the anonymization used in the AOL log was not sufficient
for user and website privacy preservation. Although the clicked URLs were trun-
cated at the site level, the log still provided the original Query and ItemRank
information. This is enough to do a look-up on the AOL search engine and
discover most of the actual URLs for each ClickURL field. As a result, all site
information available on the original query log was disclosed.

A simplistic approach to prevent this kind of information disclosure would
be to hide the Rank attribute in the log and at the same time do a simple
anonymization on the ClickURL. The idea here is to replace this attribute with
a unique identifier. This can be done using three methods:

1. Assign a unique ID to each URL: By doing this, the information that some
URLs belong to the same domain is lost.

2. Assign a unique ID to each URL and distinguish among URLs that belong
to the same site or domain: This can be done e.g. by using the same suffix
ID for all URLs of the same site. This delivers more information than the
method above, so that one can e.g. calculate the number of clicked pages in
a site and the occasions, under which many different pages of the same site
were clicked.

3. Assign the same ID to all URLs in a website: This still allows an analysis of
the click distribution and other useful statistics for rank experiments, but it
does not allow documents inside a website to be set apart.

We opt for the second method for URL anonymization. It allows us to preserve
most information about the website and the accesses in its pages.
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4.2 Attacks on Vulnerable Queries

We first consider the scenario of an adversary who only has access to public
data sources, such as the anonymized query log and a public search engine.
This corresponds to the typical general adversary. In this scenario, one can
obtain information about any website by exploiting certain types of “vulnerable”
queries. We use this term for queries whose results disclose directly the identity
of the website; the adversary does not need access to additional information
sources.

A first type of vulnerable queries are those that contain the target URL as
keyword. This is a subcategory of so-called “navigational queries” [11]: These
are queries for which the users know exactly the page they want to reach and
use the search engine to obtain the URL, using it like a bookmark on a browser.
Navigational queries become “vulnerable” from a privacy preservation point of
view when they include only the terms that later appear in the root of the se-
lected URL (i.e. the website root). For example, a query with the term “amazon”
becomes vulnerable, if the user selects http://www.amazon.com among the re-
sults. Hence, the adversary can discover the actual website, even if the log is
anonymized. To prevent this, the query log should be checked for queries that
contain keywords matching the URL root string. Such queries should be removed
or the keywords should be hidden.

Another type of vulnerable queries are those that return fewer than k results
and thus prevent an anonymization satisfying k-anonymity. The value of k is
application-specific. Once this value is set, all queries returning less than k results
must be removed.

The last and more complex type of attack using vulnerable queries involves
pairs of queries that have non-empty intersections among the clicked results.
For this scenario, we first assume an adversarial competitor who tries to find
information about specific sites; later, we generalize to both types of adversary.
The attack of the adversarial competitor can go as follows:

1. The adversary defines a set of queries Q1, which are known to return URLs
of the competitor websites at highly ranked positions.

2. The adversary performs a look-up of the occurrences of the queries in Q1
in the anonymized query log L and obtains a set of AnonID values, i.e.
anonymized URLs. These IDs constitute the set of “candidate competitors”
CC, i.e. initially all sites in L that are in the result of Q1 are possible
competitors.

The task at hand is to map as many AnonIDs in CC as possible to the
corresponding URLs. Once the URLs are known, all relevant information for
them (and ultimately for the whole site containing them) can be extracted
from L.

3. For each AnonID u ∈ CC, the adversary collects all unique queries that
have u as a clicked URL in L. We call this set Q.

4. For each qi ∈ Q the adversary collects the anonymized result-set RAi.
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5. For each pair of queries {qi, qj} ⊆ Q, such that |RAi∩RAj | ≥ 1, the adversary
issues both of them live to the search engine and recovers their real result-sets
Ri and Rj .

If |RAi ∩ RAj | = |Ri ∩ Rj | ≥ 1, then it is known that the URLs in
|RAi ∩ RAj | have been approximately mapped to real URLs. The match
becomes exact if |RAi∩RAj | = 1, or if all but one URLs in |RAi∩RAj | have
already been disclosed using the same methodology.

This attack can be extended for a general adversary: The complete log must
be scanned to build the intersection of clicked URLs in two result-sets. The
queries contributing to this intersection must be added to Q. Then, steps 4 and
5 are applied as above.

The process above does not guarantee that the adversary will disclose all
URLs of potential interest, but will nonetheless disclose all of the URLs from
each affected website. To alleviate this vulnerability, we propose to remove one
of any two queries that share at least one clicked result. In Section 5 we present
a heuristic that modifies the query log to this extent.

4.3 Attacks Using a Website Log

In the previous scenario, we assumed that the adversary had only access to the
anonymized log and to the results of a public search engine. Now we turn to a
scenario, where the adversary owns a website and can therefore use its access
log.

The access log of a website registers all requests towards the site, including
the requested URL, the time of the request, agent and IP address of the user.
In the case of combined logs, the URL where the request was performed is also
recorded (the referrer URL). If the referee is a search engine, the access log of
the website will also contain the keywords and the URL of the search engine.

Hence, if the adversary has access to a website log of the same period as the
anonymized query log, then the adversary can combine the private website log
and the public query log to disclose the anonymized information of the latter. For
example, the adversary can find the AnonId assigned to the own website (pages).
In many cases, this information is not adequate for a privacy breach. However,
if many sites collude and share their logs, then these logs can be combined to
undisclose URLs and launch the attack described in the previous subsection.

To avoid this scenario, one more constraint should be placed in the anonymiza-
tion process of the query log: The results displayed by the search engine for any
given query must contain URLs of at least k different sites, so that k-anonymity
can be pursued. Since this scenario requires collusion of multiple adversaries, we
do not discuss it further but concentrate on the simpler scenario that involve
only one adversary.

4.4 Attacks with User Information

We finally consider the scenario in which the adversary can disclose the iden-
tity of a (single) user in the query log. Here, we assume that identity disclosure
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Fig. 2. Graph representation of a tiny example query log

also implies disclosure of the results clicked by the compromised user. Then,
the adversary can trace the user and the clicked URLs in the anonymized log
and map the AnonID values to complete URLs. Such an attack can be mani-
fested by having a particular user or agent submit queries to the search engine
regularly and then trace back the queries and their results in a periodically re-
leased anonymized search log. If the queries involve pages of the adversary’s
competitors, their results can be exploited to perform the attack described in
subsection 4.2.

This scenario can be suppressed by preventing the identification of individual
users in the query log. As pointed out in Section 2, this is a separate problem,
for which solutions start emerging.

5 Graph-Based Method

The attack presented in subsection 4.2 exploits the occurrence of the same
URL(s) among the clicked results of different queries. We have designed a graph-
based method to analyze the vulnerability of query logs to this attack. At the
same time we use this method to see how the number of intersections between
clicked result-sets of queries can be reduced.

This graph representation of the query log consists of modeling queries as
nodes. Two nodes are connected with an undirected edge if they share at least one
URL between their clicked result-sets. This means that two queries are connected
by an edge if there exist one or more URLs clicked from both queries, as shown
in Fig. 2.

Our graph representation also takes into account the fact that not all nodes
are of equal importance for data mining applications. To represent the “value”
of each node in the log, we assign weights to the queries. For example, the weight
can reflect the frequency of a particular query in the log or the number of clicked
documents for that query.

Using this graph approach we show that the solution to the attack described
in subsection 4.2 is a well-defined optimization problem, namely that of discon-
necting the graph by removing nodes while preserving the maximum weighted
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graph. This corresponds to finding the maximum (weighted) independent set.
This problem is NP-Hard, so we define a heuristic approach. For this, we first
define a measure of graph density, which reflects how likely it is to find an edge
among any two nodes in the query log. The formula for this measure is:

Density =
2(# edges)

# nodes (# nodes-1)

Then, the goal of our heuristic is to reduce Density for the query log graph
to zero. The zero value of Density means that there are no intersections among
result-sets in the log. The challenge for the heuristic is to disconnect the graph
while attempting to preserve the nodes with maximum weight.

If the number of edges per node in the graph follow a power law, then this
would indicate that the number of edges can be rapidly reduced by node removal:
The graph would become disconnected very fast by only removing a few high-
degree nodes in the graph [12]. With this in mind, we define the following greedy
heuristic to disconnect the graph:

1. Sort nodes by their degree.
2. Remove the node with the highest degree.
3. Recalculate the degree of all nodes that were adjacent to the node that was

removed.
4. Compute the value of Density.
5. If the value of Density is not equal to zero, then go to Step 1, otherwise

finish.

This heuristic can be extended to incorporate the weight of each node. This is
done by replacing the criterion used in Step 1 to sort the nodes, and use degree

weight
instead of degree.

Once the graph is disconnected, certain characteristics can be analyzed ret-
rospectively, such as the speed at which the value of Density decreased and the
number of queries and of clicked documents that had to be removed to com-
pletely disconnect the graph.

6 Experimental Results and Discussion

6.1 The Dataset for the Evaluation

For our evaluation, we used a query log from the Yahoo! search engine. For pri-
vacy reasons these logs are carefully controlled and cannot be released for general
study. Even for this analysis, we do not deal with the raw query log, but only
with its graph representation. The graph representation is an application of the
graph models developed in [13] and can be computed rapidly. The computation
took approximately 2 hours on a dual core AMD OpteronTM Processor 270 with
6.7 gigabytes of RAM; it is noted though that the processing always used less
than 4 gigabytes of memory and employs only one CPU. The resulting graph
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Fig. 3. Component size distribution in the query log sample

Fig. 4. Degree distribution in the largest graph component

contains approx. 3 million nodes and reflects a sample of the usage registered by
the search engine in 2005. The original Density value for this graph is equal to
0.000089, which can already be considered low in comparison to the maximum
Density = 1.

First, we computed the likelihood of finding edges, i.e. non-empty intersections
of result-sets, among pairs of queries that share a term. This corresponds to
a subgraph of particular interest, because queries sharing a term might be a
possible target for an attack. The Density value for this subgraph is 0.000045
and thus lower than the Density value of the original graph. This means that
queries sharing terms do not necessarily share more clicked results than the rest
of the queries. Thus, an adversary would not have an advantage by focusing on
this subgraph. Therefore, we continue our analysis with the original graph.
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Fig. 5. Remaining edges vs. percentage of nodes removed

An attack may also start in a highly connected component of the graph. So,
we identified all connected components of the graph and computed their size
distribution (cf. Fig. 3).

We found that there is a very big connected component which includes almost
50% of all of the nodes in the graph. Without loss of generality, we study this
big connected component hereafter. We first analyze the distribution of the node
degrees in it. If this distribution corresponds to a power law, then, by removing
the nodes with the highest degrees it would be possible to disconnect the graph
very quickly. This would indicate that this query log is very likely to be success-
fully anonymized with very little loss of information. However, as we can see in
Fig. 4, the degree distribution is not a power law. It seems that approximately
9% of the nodes have a very high degree, so we cannot disconnect the graph by
removing only a few high-degree nodes.

6.2 Three Methods for Graph Disconnection

We focus our study on the big connected component of the original graph. To
disconnect it, we used the heuristic described in Section 5. We defined three
variations of the heuristic by using different weighting schemes:

Method 1 (degree): The nodes are sorted only by their degree, the node
weight defaults to 1.
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Fig. 6. Remaining volume of queries vs. percentage of nodes removed

Method 2 ( degree
queryFrequency ): The nodes are sorted by their degree divided with

the frequency of the query in the log.
The frequency of a query (or node) is defined as the total number of times

the query was submitted to the search engine.
Method 3 ( degree

clickedDocs ): The nodes are sorted by their degree divided with
the number of clicked documents for the query in the log.

This number clickedDocs is the total number of times that documents
were clicked from the result-set for that query.

6.3 Result Overview

Figures 5, 6 and 7 show the relation among removed nodes, remaining query
volume and documents for each method. Each figure shows how the different
log contents decrease until all edges have been removed from the query log
graph. It can be seen that the number of nodes removed to disconnect the
graph is very high for all methods. Nonetheless, the ultimate objective of re-
taining a large dataset is satisfied: The retained dataset still contains approx.
2,500,000 total queries (Fig. 6) and 1,200,000 clicked documents (Fig. 7). Here,
total queries is the sum of the frequencies of the remaining nodes (queries), while
clicked documents is the sum of all the clicks to documents from the remaining
queries.
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Fig. 7. Remaining volume of clicked documents vs. percentage of nodes removed

6.4 Comparing the Three Methods

The best-performing variation of the heuristic is Method 2, which sorts nodes on
degree divided by query frequency: It removes less queries and clicked documents
than Method 1. It dominates Method 3, which behaves similarly to Method 2
but eliminates more nodes. Thus, Method 2 retains the largest log volume.

Method 1 scans the log by processing the node with the highest degree first.
When we compare the curves in the three figures, we see that the disconnection
of the graph requires the removal of slightly less nodes (Fig. 5). However, the
method removes a larger number of total queries (Fig. 6) and clicked documents
(Fig. 7) than the other two methods. Therefore, it is inferior to the other methods
with respect to the objective of retaining a large dataset.

In Fig. 6 and Fig. 7, we can see that Method 1 follows a different curve than
the other two methods: The slope drops smoother and the drop starts earlier.
This observation indicates that the connectivity of the graph drops earlier under
this Method. We want to study extensions of this heuristic that will allow us to
shift the end-point of the curve to the left, i.e. eliminate less nodes.

7 Conclusions and Future Work

In this paper we have presented a new issue on privacy preserving data analysis
in the Web, the preservation of website privacy. We have shown that website
information can be extracted from naively anonymized query logs. We have also
defined different types of adversaries encountered when dealing with website
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information, as well as general types of vulnerabilities, which can be used to dis-
close information. We have presented specific attacks and techniques to prevent
them.

We have described a graph representation for query log privacy preservation
analysis and have defined a heuristic for log anonymization through graph dis-
connection. We have derived three methods upon this heuristic by considering
different ways of sorting the nodes in the graph and then removing the highest
rank nodes.

One of the methods, which sorts and the nodes (queries) on their degree
divided by the query frequency, is experimentally shown to be the best in pre-
serving the most amount of log volume, i.e. total number of queries and clicked
documents. The complete disconnection of the graph requires removing most of
the queries, but the statistical properties of the remaining ones still allow for
knowledge discovery tasks. Also, the disconnection of the graph can be achieved
by removing infrequent queries. Infrequent queries are those most likely to point
to individuals (persons or institutions), so it is intuitively desirable to remove
them.

The graph statistics described in [13] and the fact that query logs usually
follow stable distributions indicate that the results obtained from this log can
scale to logs of longer time periods and to query logs from other search en-
gines. Queries that are removed by our anonymization technique are infrequent,
minimizing the loss of potentially useful information in the remaining data.

Another important characteristic of the heuristic presented in this work is
that the graph representation of the query log can be computed relatively fast.
This makes the our anonymization approach suitable for rapidly changing data,
such as query logs.

Future work on this topic includes studying the possibility of making infre-
quent queries frequent by generalization. This would imply replacing queries
with their keywords. It is worth studying whether query generalization reduces
the vulnerability posed by infrequent non-disconnected queries.
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Abstract. Privacy-preserving data mining (PPDM) is an important
topic to both industry and academia. In general there are two approaches
to tackling PPDM, one is statistics-based and the other is crypto-based.
The statistics-based approach has the advantage of being efficient enough
to deal with large volume of datasets. The basic idea underlying this
approach is to let the data owners publish some sanitized versions of
their data (e.g., via perturbation, generalization, or �-diversification),
which are then used for extracting useful knowledge models such as de-
cision trees. In this paper, we present a new method for statistics-based
PPDM. Our method differs from the existing ones because it lets the
data owners share with each other the knowledge models extracted from
their own private datasets, rather than to let the data owners publish
any of their own private datasets (not even in any sanitized form). The
knowledge models derived from the individual datasets are used to gen-
erate some pseudo-data that are then used for extracting the desired
“global" knowledge models. While instrumental, there are some techni-
cal subtleties that need be carefully addressed. Specifically, we propose
an algorithm for generating pseudo-data according to paths of a decision
tree, a method for adapting anonymity measures of datasets to measure
the privacy of decision trees, and an algorithm that prunes a decision tree
to satisfy a given anonymity requirement. Through an empirical study,
we show that predictive models learned using our method are signifi-
cantly more accurate than those learned using the existing �-diversity
method in both centralized and distributed environments with different
types of datasets, predictive models, and utility measures.

1 Introduction

Personal data collected by government, business, service, and educational orga-
nizations is routinely explored with data mining tools. Although data mining is
typically performed within a single organization (data source), new applications
in healthcare, medical research, fraud detection, decision making, national secu-
rity, etc., also need to explore data over multiple autonomous data sources. A
major barrier to such a distributed data mining is the concern of privacy: data
owners must balance the desire to share useful data and the need to protect
private information within the data.
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Two approaches of privacy-preserving data mining (PPDM) can be identi-
fied in the literature: one is crypto-based and the other is statistics-based. The
crypto-based PPDM approach, such as [1,2], requires data owners to coopera-
tively execute specially designed data mining algorithms. These algorithms pro-
vide provable privacy protection and accurate data mining results, but often
suffer performance and scalability issues. On the other hand, statistics-based
PPDM approach, such as [3,4,5,6,7,8,9,10], lets each data owner release a sani-
tized dataset (e.g., via perturbation [3] or generalization [10]) to a third party,
who can then execute data mining algorithms to explore the published data.
Statistics-based methods have efficient implementations, making them more ap-
propriate than crypto-bases methods to deal with large volumes of data.

Fig. 1. Privacy-preserving data mining by knowledge model sharing: the goal is that
the two resulting global knowledge models are (almost) the same

One problem of statistic-based data publishing methods is that they suffer loss
of data quality, probably because they treat data sanitizing and data mining as
unrelated tasks. For example, suppose a data miner wants to learn a decision
tree classifier from the published data. Since decision tree learning algorithms
select attributes for tree node split according to data distributions, in order for
these algorithms to learn high quality decision trees from a published dataset,
the sanitization methods should preserve the distributions of best splitting at-
tributes. But, since data sanitizing and data mining are not considered together
in a data publishing framework, the sanitization methods often indiscriminately
alter data values, causing changes to the distributions of those important at-
tributes, thus adversely affect the accuracy of classifiers learned from sanitized
data. Even if there are opportunities to satisfy a privacy requirement and to pre-
serve data quality by modifying data of some less important attributes, existing
data publishing methods are unable to take advantage of those opportunities.

To address this problem, we introduce in this paper a new approach: knowledge
model sharing (or simply model sharing), which lets each data source release a
privacy-preserving local knowledge model learned from its private data, and let
a data miner explore pseudo data generated from the local knowledge models.
Specifically, as indicated in Figure 1, each data source learns a type of knowledge
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model closely related to what a data miner wants to learn, using conventional
data mining algorithms, and modifies the model according to a privacy require-
ment before releasing it to the data miner. The data miner uses local knowledge
models to generate local pseudo datasets and combines them into a single dataset
before applying conventional data mining algorithms to learn global knowledge
models. In this paper, we focus on using predictive models as global knowledge
models, with decision trees or classification rule sets as local knowledge models.

By not releasing any data (not even a sanitized version) and by modifying
local knowledge models, model sharing can effectively protect privacy. In addi-
tion, as our study shows, this approach obtains much better quality data than
data publishing methods do. Model sharing can be easily implemented since for
example, data sources can easily offer data mining services [11,12] using widely
available data mining tools and service-oriented computing techniques.

While model sharing is instrumental, a number of technical subtleties need to
be carefully addressed. In this paper, we make the following specific contributions.

1. For data miners, we define the problem of generating pseudo-data from a
predictive model and present an efficient heuristic algorithm that generates
a pseudo dataset from a decision tree, according to its paths. This algorithm
can be easily extended to generate pseudo datasets from disjoint classification
rules.

2. To measure privacy of a predictive model, we show how to adapt privacy
measures of data, such as k-anonymity and �-diversity, to measure the pri-
vacy of decision trees whose class labels represent sensitive information. To
our knowledge, privacy measure of knowledge models has not been proposed
in the literature.

3. To protect private information contained in a predictive model, we present
an algorithm for a data owner to prune a decision tree according to a given
anonymity measure. This tree pruning technique can be viewed as a special
form of generalization that preserves important patterns in the raw data.
Used together with a good pseudo data generation method, this technique
can result in higher data quality, compared to data publishing methods.

4. We perform an empirical study of the pseudo-data generation and tree prun-
ing techniques. Specifically, we measure the utility of the pseudo data by
the quality, such as classification accuracy, of global predictive models. For
pseudo-data generation, we compare predictive models learned from global
pseudo datasets with those learned directly from the local raw data. For
tree pruning, we compare predictive models learned respectively from raw
data, pseudo data, and �-diversified data. In addition to the decision tree,
we also study other types of global predictive models, such as Naive Bayes
and conjunctive rules. Our results show that predictive models learned us-
ing our method are significantly more accurate than those learned using the
�-diversity method in both centralized and distributed environments with
different types of datasets, predictive models, and utility measures.

We focus on data quality and limit the comparison of our tree pruning
technique to the �-diversity technique because, while data mining provides
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a framework for comparing data utility of different privacy-preserving tech-
niques, no metric currently exists for comparing privacy assurance of these
techniques, making it impossible to fairly compare different privacy protec-
tion methods. We are able to compare pseudo data produced by tree pruning
method with �-diversified data only because the �-diversity measure of data
and the �-diversity measure of decision trees are very similar. Finding a
metric that can be used to compare privacy assurances of all the PPDM
techniques is still an open problem.

The rest of this paper is organized as follows. In Section 2, we define the problem
of pseudo-data generation from a decision tree and present a path-based pseudo-
data generation algorithm for data miners. In Section 3, we present the l-diversity
privacy measure for decision tree and an algorithm that prunes a decision tree to
satisfy a given anonymity-based privacy requirement for data owners. In Section
4, we describe our empirical study and present experiment results. In Section 5,
we discuss previous work related to our work presented in this paper. We draw
conclusions in Section 6.

2 Pseudo-data Generation from Decision Trees

We consider n data sources whose private data tables (or datasets) form a hori-
zontal partition1. We assume that private data tables contain no personal iden-
tifier, such as name or identity number, but may contain duplicate tuples.

The goal of a data miner is to learn a global decision tree (see Figure 1) from
a collection of local pseudo tables. In order to use this global decision tree to
classify unseen tuples, local pseudo tables must preserve sufficient information
contained in local private tables. One way to measure the quality of local pseudo
tables is to compare the quality of the global decision tree to that of the global
basis decision tree, learned directly from the (unavailable) collection of private
tables (see Figure 1). Here, instead of seeking for high absolute quality, we are
looking for high relative quality: the quality of the global (learned) decision tree
should be as high as that of the global basis decision tree. Thus, one may want
to formulate the problem as to find optimal local pseudo tables that guarantee
identical quality of the global learned and basis decision trees. But unfortunately,
this problem is ill-defined because in practice the global basis decision tree is not
available to the data miner.

To overcome this difficulty, we focus on the problem of generating a high
quality pseudo table for a single data source. Once this problem is solved, we
can construct a high quality global pseudo table by combining high quality local
pseudo tables. With this in mind, we define the pseudo-data generation problem
as follows.

1 In a distributed environment, private data tables of data sources can form a hor-
izontal, vertical, or hybrid partition, where tables of a horizontal partition have a
common set of attributes and those of a vertical partition have different sets of
attributes.
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Problem Statement: Find a pseudo dataset D based on a given basis
decision tree h so that it minimizes the difference of classification accu-
racies, measured using any testing set, between h and the decision tree
h′ learned from D.

Notice that the difficulty involving multiple data sources is avoided here because
both the basis decision tree h and the learned decision tree h′ are available: h is
published by the data source and h′ is learned from a pseudo table.

This problem has at least one solution: the private table used to learn the
basis tree h. Obviously, if a pseudo table is the same as the private table, the
learned and the basis trees can have identical structures, and therefore, identical
classification accuracies. However, we are more interested in other solutions to
this problem (for an obvious reason).

(a) (b)

Fig. 2. A sample decision tree with leaf labeled by (class label, hit count, miss count)

Finding an optimal pseudo table from a given basis decision tree is difficult
for several reasons. First of all, due to inherent randomness of decision tree
algorithms (for example, they make random choices among several possible split
attributes of identical class purity), different decision trees may be learned from
the same dataset. Thus, even if a pseudo table is indeed the private table, there
is no guarantee that the learned and the basis trees will have identical structures.
Secondly, if two decision trees have different structures, it is difficult to determine
if the difference of their classification accuracies is minimal.

In the rest of this section, we present a heuristic algorithm for a data miner
to generate pseudo data from a decision tree. This algorithm uses information
contained in a typical decision tree, as we shall describe next.

2.1 Decision Tree and Pseudo-data

A decision tree (see Figure 2(a) for an example) consists of labeled nodes and
edges. The label of an edge is a predicate A = a specifying that attribute A
(of a tuple) has a value a, where a is a simple value if A is categorical and an
interval if A is numeric. All the outgoing edges of a node are labeled by the same
attribute and the values in these labels partition the domain of the attribute.
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Each leaf node v is labeled by a class v.class, the majority (or plurality)
class of training tuples assigned to the node during decision tree learning, and
two counts: a hit count v.hit representing the number of training tuples2 in the
majority class at this node, and a miss count v.miss representing the number of
misclassified training tuples (in other classes) at the node.

Each root-to-leaf path p of the tree has a path label label(p), a class label
class(p), a hit count hit(p) and a miss count miss(p), where label(p) is a con-
junction of edge labels, the class label and the two counts are those of the leaf
node of the path. In the path label, each attribute appears at most once and if
A = a appears, a is the most specific value of A in the entire path. We denote the
set of attributes of path p by attr(p), and the value of an attribute A ∈ attr(p) by
value(A, p). For example, let p be the second leftmost path in the decision tree
of Figure 2(a). Then, label(p) = (A = a1 ∧ B = b2), class(p) = 1, hit(p) = 10,
miss(p) = 3,attr(p) = {A, B}, and value(A, p) = a1.

A decision tree can be used to predict the class of unseen tuples. If a tuple
t satisfies a path p of a decision tree, that is, if each attribute of t satisfies
the condition specified in the path label, or equivalently ∀A ∈ attr(p) t[A] ∈
value(A, p), the class of t will be class(p). In addition, a decision tree is also a
descriptive model. In particular, the decision tree local to a data source can be
viewed as an abstract representation of the local private table, providing a basis
for generating a pseudo table.

By considering the learned the the basis decision trees that are structurally
identical, we obtain following characterization of an important type of optimal
pseudo tables.

Proposition 1. Let D be a pseudo table generated from a given basis decision
tree h, and h′ be a decision tree learned from D. If h and h′ have identical
structure, that is h = h′, then every tuple in D satisfies a path of h. Furthermore,
for each path p ∈ h, D contains exactly hit(p) + miss(p) tuples that satisfy p.

Proof. Since h and h′ have identical structure, every path of h′ is also a path of
h, that is ∀p(p ∈ paths(h′) ⇐⇒ p ∈ paths(h)). According to the information
contained in a decision tree, since D is the training set of h′, each tuple of D
must satisfy exactly one path of h′, therefore, it also satisfies the same path of
h. Consequently, the hit and miss counts of each path in h′ report exactly the
number of tuples in D that satisfy the path.

Although the properties described in Proposition 1 are not necessary, because
not all optimal pseudo datasets result in identically structured learned and ba-
sis trees, they provide a basis for generating pseudo tuples: paths can define
templates of pseudo tuples. For example, the label of the path in Figure 2(a),
highlighted by thick lines, defines the template tuple in Figure 2(b), where values
of attributes A and C are specified by the path label, and values of attributes B
and D, absent from the path, are yet to be determined (indicated by question
marks).
2 To ease the presentation, we consider only the actual counts. It is straightforward

to extend this to relative frequencies.
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2.2 Path-Based Data Generation

It is difficult to determine optimal values of a template tuple for attributes
absent from a given path. Let us consider a significantly simplified case. Assume
that a decision tree contains s paths, where each path has r edges labeled with
distinct attributes and is responsible of generating k pseudo tuples. Suppose each
tuple has m attributes and each attribute has exactly K distinct values. Since
a pseudo table may contain duplicate tuples, the k pseudo tuples of a path can
be generated independently. Similarly, since paths of the decision tree partition
tuples into disjoint groups, pseudo tuples of different paths can also be generated
independently. Therefore, there are N = ((Km−r)k)s possible pseudo datasets
that satisfy the properties stated in Proposition 1. To the best of our knowledge,
there is no known efficient algorithm for finding an optimal pseudo table using
template tuples defined by decision tree paths. An exhaustive search is obviously
too expensive.

We solve the problem with a simple heuristic that exploits impurity measures
(such as information gain, Gini-index, or miss-classification rate) used by decision
tree learning algorithms. We view the generation of a pseudo table as an inverse
process of decision tree learning. Since at each tree node, the attribute that leads
to the highest gain of class purity, based on a given impurity measure, is chosen
by the learning algorithms to split the training tuples in the node, a pseudo-
data generation algorithm can try to force the learning algorithm to select the
same attribute, by making sure that the class purity of non-split attributes in
the pseudo data is lower than that of the split attribute. Although distributions
of non-split attributes in raw data are unknown, we can still minimize the class
purity of these attributes in pseudo data by assigning random values from a
uniform distribution.

Based on this heuristic, algorithm PGEN (in Figure 3) uses each path of a
decision tree to generate a set of (not necessarily distinct) tuples. In line 2 of the
algorithm, each path is considered independently. The number of tuples to be
generated by a path (see line 3) can be determined in several ways. For example,
it can be the sum of the hit and miss counts, or a proportion of a user specified
table size.

In line 4 of the algorithm, an empty template tuple is generated and an un-
specified value is assigned to each attribute. Subsequently, for each attribute
that appears in the path, a value is assigned by function value(A, p) according
to the type of the attribute: if the attribute is categorical, the value is the one
specified in the path label (line 7); if the attribute is numeric, the value is chosen
within the interval specified in the path label (line 8), which can be a fixed de-
fault value, such as the middle point or an end point of the interval, or a random
value drawn from the interval according to a given distribution. For each at-
tribute that is absent from the path, a random value from its domain is assigned
(line 9). Finally, in line 10, a class label is assigned according to the distribution
of classes indicated by the hit and miss counts of the path. Non-majority classes
can be randomly assigned to the tuple according to a known distribution or a
uniform distribution, the latter is used in our experiments.
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Algorithm Path-based Pseudo-data Generation (PGEN)
Input: A decision tree T and a set of attributes A of data
Output: A set S of labeled tuples in A
Method:

1. S = ∅;
2. for each path p of T do
3. for pseudo tuple t to be generated by p do
4. t = a new empty tuple;
5. for each attribute A ∈ A do
6. if A ∈ attr(p) then
7. if A is categorical then t[A] = value(A,p);
8. else t[A] = a value selected from value(A,p));
9. else t[A] = a value selected from the domain of A;
10. t[class] = a class selected based on counts of p;
11. append t to S;
12. return S;

Fig. 3. Path-based Pseudo-data Generation Algorithm

3 Privacy-Preserving Tree Pruning

So far, we only considered the pseudo-data generation by the data miner. We
now consider what a data owner needs to do. If the local predictive model of
a data source does not leak private information, the data owner needs to do
nothing more than releasing the local model. However, a predictive model may
leak private information. For example, assume that the class labels of leaf nodes
in the decision tree in Figure 2(a) are values of a new attribute, say SA, referred
to here as a sensitive attribute, representing some private information. Then the
path labeled by A = a3, C = c1, D < d1 is open to the homogeneous attack
described in [9], because its hit and miss counts reveal that all the tuples in that
path have the same sensitive value SA = 1.

Although it is possible for a decision tree learned from a private table to
include no sensitive attribute, hence to leak no private information, it is common
that a decision tree has a sensitive attribute as its class, just like the tree in Figure
2(a). Thus it is important to prevent a knowledge model from leaking private
information. A critical question is how to measure the privacy of a knowledge
model. In the following, we show that anonymity measures of dataset, such as
�-diversity, can be easily adapted to measure privacy of decision trees. In doing
so, the privacy of published data and that of pseudo data can be compared with
each other.

3.1 Anonymity Measures of Decision Trees

Interestingly enough, there is a close analogy between paths of a decision tree
learned from private tables and equivalence classes in an anonymous dataset
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produced by generalization methods, such as k-anonymity and �-diversity. In
generalization methods, tuples in a private table are generalized to satisfy a
privacy requirement according to taxonomies of quasi-identifier (QI) attributes.
The generalized tuples form equivalence classes, called QI-groups, in which all
tuples have the same QI value. Each QI-group in a generalized dataset needs
to satisfy a privacy requirement, such as containing at least k tuples (under k-
anonymity) or having well-represented sensitive values (under �-diversity). On
the other hand, paths in a decision tree are similar to QI-groups of a generalized
dataset. Like QI-groups, paths also partition tuples into equivalence classes: all
the tuples in one path have the same values under attributes that are present
in the path. We can adapt anonymity measures of QI-groups to measure the
privacy of decision tree paths. For example, to measure paths with k-anonymity,
we can require each path p of the decision tree to satisfy p.hit + p.miss ≥ k.

Similarly, we can also measure paths with an �-diversity measure. For example,
one of the �-diversity measures proposed in [9] is (c, �)-diversity, which requires
every QI-group to satisfy d1 ≤ c · ∑m

i=�−1 di, where di, 1 ≤ i ≤ m, is the
number of tuples of the ith largest class within the QI-group. To apply (c, �)-
diversity to measure a decision tree, we can require every path p to satisfy
� ≤ p.miss + 1 and p.hit < c × p.miss

�−1 . Intuitively, the largest class of the path,
p.class, contains p.hit tuples, and all the other classes collectively contain p.miss
tuples. If p.miss > 0, we need to estimate the sizes of non-majority classes.
Specifically, if p.miss < �−1, there are at most �−2 other classes (each contains
one tuple), therefore, the path trivially violates �-diversity. If p.miss ≥ �−1, there
may be � or more classes in the path. Since the class distribution of misclassified
tuples is not provided by the decision tree, the adversary may have to assume
that misclassified tuples are equally distributed over � − 1 non-majority classes,
with p.miss

�−1 tuples per class, with the smallest class representing all remaining
classes (if there are more than � classes. For example, the highlighted path in
Figure 2(a) indicates that there are 14 tuples in class 1, and 6 tuples in classes
2 and 3 (assuming there are total three classes), with three tuples in each class.
As a result, this path is (5, 3)-diversified.

3.2 Anonymity-Based Tree Pruning

With generalization methods, QI-groups that does not satisfy a user-specified
anonymity requirement will be combined with other QI-groups. The correspond-
ing operation for a decision tree is to combine paths of a common prefix into a
single path, which effectively prunes the decision tree. We now present a simple
algorithm that prunes a decision tree based on a given anonymity requirement
(such as k-anonymity or (c, �)-diversity).

Algorithm APT (see Figure 4) makes two traversals of the tree: a depth-first
traversal (lines 2-4) that propagates class and hit/miss counts from leaf nodes to
their ancestor nodes, and a bottom-up level-by-level traversal (lines 6-14) that
prunes the nodes that does not satisfy a given anonymity requirement. A node
is pruned by being combined with some of its sibling nodes (lines 10-13). Once
all children nodes of a parent node are pruned, the parent node is transformed
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Algorithm Anonymity-based Tree Pruning (ATP)
Input: a decision tree T and an anonymity requirement a
Output: a tree T ′ that satisfies a
Method:

1. T ′ = T ;
2. for each node v encountered in a depth-first traversal of T ′ do
3. if v is a leaf node then check(v,a);
4. else compute v.hit, v.miss and v.class;
5. L = the maximum level of T ′;
6. while |T ′| > 2 and not all leaf nodes marked pass do
7. L = L − 1;
8. for each non-leaf node v at level L do
9. while v has a bad child b and a merge is possible do
10. merge b with suitable siblings into a new child u of v;
11. check(u,a);
12. if v has a single child u then
13. replace v by u;
14. else mark v pass;
15. if |T ′| > 2 return T ′ else return an empty tree;

Fig. 4. Anonymity-based Tree Pruning Algorithm

into a new leaf node. If the algorithm terminates successfully, it will produce a
decision tree satisfying the anonymity requirement. Otherwise, it produces an
empty tree.

During the depth-first traversal, all the leaf nodes are checked against the
anonymity requirement, and in the meantime, the hit and miss counts as well
as class are calculated for each non-leaf node. A node is marked if it is a leaf
node and satisfies the anonymity requirement (Line 3) or all its children are
marked (Line 13). In Line 4, the hit and miss counts, as well as the label of the
majority class are calculated in a bottom-up fashion. Assume a non-leaf node
has k children and the set of classes is C. The majority class of the non-leaf
node is the class containing the most tuples in its sub-tree. Due to the recursive
traversal, the number of tuples in each class cj in a node can be estimated as
follows, using the hit and miss counts of the node’s children nodes:

hitcj =
∑

v.class=cj

v.hit +
1

|C| − 1

∑

v.class�=cj

v.miss (1)

where v.miss
|C|−1 is the expected number of misclassified tuples in v that belongs to

class cj . Intuitively, if the majority class of a child node is cj , this child node
will contribute v.hit tuples to class cj of its parent node. If the majority class of
a child node is not cj , it will still contribute a portion of v.miss tuples to class
cj of its parent node. To determine the size of that portion, we assume that all
non-majority classes are equally likely among misclassified tuples. This can be
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extended easily to use actual distributions of classes in children nodes, if that
information is available. Once the hit counts of class labels are calculated, the
class and counts of the parent v can be obtained as the following: v.class = c =
maxargcj∈C{hitcj}, v.hit = hitc, and v.miss =

∑
c∈C(hitc + missc) − v.hit.

During the bottom-up traversal, starting from the second-to-the-bottom level,
the algorithm looks for nodes whose children do not all satisfy the anonymity
requirement. Once found, the violating node will be merged with some of its
siblings (lines 8-10). Suppose b is the violating node and it has an incoming
edge labeled by A = a. Different criteria can be used to select the siblings to be
merged with b. For example, we can merge all the siblings of b. Alternatively,
we can merge b with those siblings whose incoming label is A = a′ where a′ is
a descendant of a. To merge a set of siblings, we remove them together with all
their descendants, and then add a single new node under their parent. The hit
count, miss count, and class label of this new node are determined in the same
way as in line 4, treating the set of sibling nodes as the children of the new node.

If the pruning terminates successfully, the algorithm returns a tree containing
a root and at least two leaf nodes, that is |T ′| > 2. Otherwise, it simply returns
an empty tree.

4 Empirical Study

We evaluate the path-based pseudo-data generation and anonymity-based deci-
sion tree pruning techniques empirically by comparing the quality of predictive
models learned from the pseudo-data with the quality of those models learned
directly from the private data. We also compare these techniques with the �-
diversity technique of data publishing.

We implemented the PGEN algorithm (described in Section 2.2) and the ATP
algorithm (described in Section 3.2) in Java and performed extensive experiments
on a Pentium PC with 2GB memory.

The five datasets listed in Table 1, from the UCI Machine Learning Reposi-
tory, were used in our study. For the purpose of the study, these datasets were
preprocessed to remove missing values.

In our experiments, decision trees are always used as local predictive models,
but different models, including Naive Bayes classifiers, conjunctive rules, decision

Table 1. Experimental datasets

datasets #Instances # Attributes #Classes
Nominal Numeric

Adult 45204 9 6 2
Car 1728 7 0 4

CMC 1473 8 2 3
Nursery 12960 9 0 5
Train 3000 9 1 2
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tables, random forests and decision trees, are used as the global model. These
models are considered because they are widely used and are able to handle our
datasets. In our study, these predictive models are learned using public-domain
Java implementations of their respective learning algorithms.

We consider two pseudo-data generation methods. One method, referred to as
BASEGEN, uses the published decision tree to predict and label tuples randomly
selected from the data space. The other is PGEN, the path-based pseudo-data
generation method.

The quality of predicative models is measured by classification accuracy and
class match, defined respectively as the percentage of testing tuples that are
correctly classified by the predictive models being tested and the percentage of
testing tuples that are classified identically by the models being compared. In
addition to these two measures, for decision trees, we also measure path match,
defined as the percentage of paths shared by the decision trees under comparison.
That is,

ss(h, h′) =
|paths(h) ∩ paths(h′)|
|paths(h) ∪ paths(h′)|

where for any decision tree h, paths(h) denotes the set of root-to-leaf paths
of h.

To account for the randomness in the data, all the quality measures are ob-
tained using the ten-fold validation method and reported here as the average
over five iterations. To evaluate the impact of data distribution, we consider
distributed environments with 1 to 10 data sources. Specifically, in each run,
one fold of data is reserved as the global testing set. The other nine folds are
first used to learn a global basis predictive model, referred to as BASIS, and
then are randomly partitioned into equal-sized private tables among all the data
sources. All the data sources use the same data generation algorithm to create
pseudo-data.

To evaluate the tree pruning method, we compare two methods, one method,
referred to as PPGEN, is ATP followed by PGEN, and the other method, referred
to as LD, is the �-diversity data publishing method. Specifically, we generate a
�-diversified dataset using LD and a pseudo dataset using PPGEN from the same
raw data, and compare quality measures of predictive models learned from these
datasets. Our Java-based implementation of LD is based on [9].

4.1 The Quality of Pseudo-data Generation

In this study, we compare the quality of the two pseudo-data generation methods:
BASEGEN and PGEN. To focus on data generation, the decision trees used to
generate pseudo-data are not pruned in this study.

Figure 5 shows accuracies of decision trees and Naive Bayes classifiers on
three UCI datasets. In the two charts in this Figure, the X-axis represents the
number of data sources, ranging from 1 to 10 (showing 1 to 5 in order for the
graph to be readable) and the Y-axis is the average classification accuracy. The
group of 9 bars consists of three subgroups, each having 3 bars, corresponding to
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Fig. 5. Accuracy of a single predictive model on Adult, Car and Nursery datasets

BASEGEN, BASIS, and PGEN results with Adult, Car, and Nursery datasets,
respectively. The accuracies of BASIS classifiers stay the same across all groups.
The results on the other two UCI datasets are similar to those presented here
and are omitted to save space. In Figure 5(a), PGEN performs very well as
compared to BASIS. BASEGEN on the other hand, consistently performs worse
than BASIS. It is interesting that for Car and Nursery datasets, as the number
of owners increases, the accuracy of PGEN increases and that of BASEGEN
decreases. This trend is not observed with Adult dataset. We observe a similar
trend in Figure 5(b), which uses Naive Bayes classifiers rather than decision trees
as the basis and learned models, although the difference between BASEGEN
and PGEN are not as big as in Figure 5(a) for Car and Nursery data. An
exception is with the Adult data, where as the number of data sources increases,
the accuracy of BASEGEN improves more significantly than in in Figure 5(a).
Similar trends are also observed in results with other predictive models and
datasets. From these results, we can conclude that PGEN can generate high
quality pseudo-data that effectively preserves the information in the raw data,
and BASEGEN can also be useful for some datasets with a small number of data
sources.

Figure 6 shows classification accuracies of Conjunctive Rule, Decision Tree and
Naive Bayes models with (a) Adult data and (b) Nursery data. Both Decision
Tree and Naive Bayes models perform better on Nursery data than on Adult
data. The Conjunctive Rule does just the opposite. Accuracy of global decision
trees are better than the other two models, which is expected because published
local models are also decision trees. It is interesting however that the Naive Bayes
model performs equally well with both BASEGEN and PGEN on Nursery data,
but does better with PGEN than with BASEGEN on Adult data. Also notice
that the conjunctive rule model performs much better with BASEGEN than
it does with PGEN on Adult data, which is somewhat surprising. The results
obtained with other predictive models on other datasets are similar to those
presented in Figure 6(b).
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Fig. 6. Accuracy of Conjunctive Rule, Decision Tree, and Naive Bayes classifiers

Fig. 7. Privacy vs accuracy of classifiers on Nursery dataset

In addition to classification accuracy, we also obtained results on class match
and path match. While the results on class match are very similar to that of
classification accuracy, path match results reveal very little similarity between
decision trees learned from raw data and those learned from pseudo-data, with
typically less than 30% and frequently less than 1% shared paths. This result
seems to suggest that the quality of pseudo datasets are not related to the
structural similarity of decision trees.

4.2 Effect of Anonymity-Based Decision Tree Pruning

To evaluate ATP method, we compare the quality of PPGEN and LD over a
range of (c, �)-diversity privacy requirements, with � ranging from 2 to 5 and c
ranging from 5 to 20 (with an increment of 5). In out experiments, we generate
an �-diversified dataset using the LD method and learn a global basis predictive
model (referred to as BASIS) from each global training set before it is partitioned
among data sources. A global predictive model (also referred to as LD) is also
learned from the �-diversified dataset. To create a global pseudo dataset, the
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global training set is first partitioned among data sources, and subsequently
used to learning local decision trees for data sources. These local decision trees
are pruned using ATP under the same privacy requirements as used by LD to
generate the l-diversified data. Then pseudo datasets are generated from local
pruned decision trees using PGEN method, and subsequently combined into the
global pseudo dataset. Finally, the global predictive models corresponding to
PPGEN are learned. The classification accuracy as well as class match of the
BASIS, LD, and PPGEN predictive models are compared here.

Figure 7 shows classification accuracy of decision tree and Naive Bayes mod-
els learned from the Nursery dataset. This result is representative of similar
results obtained with other datasets. In Figure 7, the X-axis represents privacy
requirements roughly ordered from left to right according to increasingly stronger
privacy requirements, and the Y-axis represents the average accuracy. The lines
represent various combinations of data generation methods (LD vs. PPGEN)
and number of data sources (ranging from 1 to 10 with increment of 5). Again,
we have to omit some results to make these figures legible.

From Figure 7 (a) and (b), we can see that PPGEN significantly outperforms
LD (by more than 30 percentage points) over the entire range of privacy re-
quirements that are tested. Furthermore, PPGEN continues to produce usable
pseudo-data (with a 30% accuracy rate) as LD stops to produce any data due
to exceedingly high privacy requirement (starting with l = 4 and c = 10). It is
also interesting to see that the performance of PPGEN also falls sharply after
� = 4 and c = 10, and that the increasing number of data sources seems to have
a diminishing effect on accuracy.

These results may be attributed to multiple factors. First, LD performs a
full dataset generalization on all QI-attributes, but PPGEN supports a hybrid
generalization: different paths generalize their own attribute to their own levels,
guided by the published decision tree. Second, since LD is applied to the private
dataset, it suffers if the dataset is highly skewed or if it lacks a good distribution
of classes, but PPGEN is better protected from this because it assumes an even
distribution of misclassified tuples at every leaf node. This feature also explains
why PPGEN can satisfy higher privacy requirements than LD. Finally, the re-
sults support the expected deterioration in quality as privacy increases. Similar
results were obtained with the Car dataset.

Notice that, the pseudo dataset generated by PPGEN under a given pair
of (l, c) is likely not to satisfy (c, l)-diversity on data. This is because the paths
pruned by PPGEN differ from the QI-groups generalized by LD in that they typ-
ically involves fewer attributes than do QI-groups. Thus, tuples in the same path
may belong to different QI-groups when measured using anonymity measures of
datasets. Thus, a pseudo table may have many more smaller QI-groups than the
corresponding �-diversified dataset, leading to a violation of the data-oriented
�-diversity requirement. This however does not reduce the privacy assurance of
PPGEN because the pseudo tuples are randomly generated rather than gener-
alized from the raw data.
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5 Related Work

In this section we briefly discuss the relationship between the work described in
this paper and the work in several closely related areas. Our work is motivated
by the problem of low data utility of existing methods that use perturbation or
generalization to protect privacy.

Privacy-preserving data mining based on perturbation techniques was pio-
neered in [3], which perturbs data values by adding a noise and learns decision
trees from an estimation of original data distribution. The adding-noise perturba-
tion method was shown to be flawed in [13], and a number of other perturbation
methods have been proposed including matrix perturbation [6,5], ρ1-to-ρ2 pri-
vacy breaching [4], and personalized breaching probability [14]. In addition to
decision trees, perturbation have also been used in PPDM to find association
rules [6,4,15,16] and clustering [17].

The well-known generalization method, K-anonymity, was first studied in [10]
for data disclosure. Implementations of k-anonymity include bottom-up gener-
alization [18], top-down specialization [19], and Incognito [20]. The k-anonymity
is extended to �-diversity in [9] to respond to two types of attacks against k-
anonymity: homogeneous attack and background attack. To improve utility of
�-diversified data, [21] presented a method that publishes marginal tables in addi-
tion to �-diversified tables. Another extension of k-anonymity, (α, k)-anonymity,
is proposed in [22]. Because of the analogy of paths of a decision tree and
QI-groups in data produced by these generalization methods, our tree pruning
method can be used with any anonymity measure used by these methods.

Protecting privacy by generating pseudo data according to statistics of the
private data has been proposed before. The method described in [23] generates
pseudo data from statistics of condensed groups, which are sets of predetermined
number of data records closest, in a multidimensional space, to randomly selected
private records. The method in [7] learns a given number of clusters of at least a
given size, and for each cluster, generate pseudo data according to the QI-values
of the center, the size of the cluster, and the set of sensitive values in the cluster.
Our method of generating pseudo data is different from these methods in that
we use the statistics contained in decision trees only for attributes in their paths.

In conventional distributed data mining literature, there has been much work
[24,25] on combining classifiers learned fromdifferent sources into ameta-classifier.
These methods do not teak privacy into consideration and need to resolve conflict
among different classifiers using a global testing set, which in our environment will
contain private tuples. Our method learns global model from pseudo data rather
than by integrating local models directly. This not only avoids using private tuples
for testing, but also allows us to learn global models of different types.

The recent work on secure sharing of association rules and frequent patterns
[26,27] focus on hiding sensitive association rules and blocking inference channels
for the protection of privacy. However, in these papers, what considered private
is some association rules or patterns rather than information about individuals.
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Crypto-based methods, such as [1,2], do not have the privacy issue of lo-
cal knowledge models because nothing is shared among data sources. But, in
addition to performance and scalability issues, these methods still face the pri-
vacy issue of global knowledge models they produce, to which our method for
measuring and preserving the privacy of knowledge models remains relevant.

6 Conclusions

In this paper, we present a new PPDM approach that aims to learn high quality
knowledge models yet still protect privacy. With this knowledge model sharing
approach, each data source releases a privacy-preserving local knowledge model
learned from its private data, and a data miner mines pseudo data generated
from the local knowledge models. We define the problem of generating pseudo-
data from predictive models, such as decision trees and sets of classification rules,
and present a heuristic algorithm for a data miner to generate pseudo-data ac-
cording to paths of a decision tree. For data owners, we show how to adapt
anonymity measures of datasets to measure the privacy of decision trees, and
present an algorithm that prunes a decision tree to satisfy a given anonymity
requirement. Our results, obtained through an empirical study, show that pre-
dictive models learned using our method are significantly more accurate than
those learned using the existing �-diversity method in both centralized and dis-
tributed environments with different types of datasets, predictive models, and
utility measures.
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Abstract. Data mining tasks such as supervised classification can often
benefit from a large training dataset. However, in many application do-
mains, privacy concerns can hinder the construction of an accurate clas-
sifier by combining datasets from multiple sites. In this work, we propose
a novel privacy-preserving distributed data sanitization algorithm that
randomizes the private data at each site independently before the data is
pooled to form a classifier at a centralized site. Distance-preserving per-
turbation approaches have been proposed by other researchers but we
show that they can be susceptible to security risks. To enhance security,
we require a unique non-distance-preserving approach. We use Kernel
Density Estimation (KDE) Resampling, where samples are drawn inde-
pendently from a distribution that is approximately equal to the original
data’s distribution. KDE Resampling provides consistent density esti-
mates with randomized samples that are asymptotically independent of
the original samples. This ensures high accuracy, especially when a large
number of samples is available, with low privacy loss. We evaluated our
approach on five standard datasets in a distributed setting using three
different classifiers. The classification errors only deteriorated by 3% (in
the worst case) when we used the randomized data instead of the original
private data. With a large number of samples, KDE Resampling effec-
tively preserves privacy (due to the asymptotic independence property)
and also maintains the necessary data integrity for constructing accurate
classifiers (due to consistency).

1 Introduction

Consider the following scenario: A group of hospitals are seeking to construct
an accurate global classifier to predict new patients’ susceptibility to illnesses.
It would be useful for these hospitals to pool their data, since data mining
tasks such as supervised classification can often benefit from a large training
dataset. However, by law, the hospitals cannot release private/sensitive patient
� Vincent Tan is supported by the Agency for Science, Technology and Research

(A*STAR), Singapore. He performed this work at I2R, A*STAR.

F. Bonchi et al. (Eds.): PinKDD 2007, LNCS 4890, pp. 116–137, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Privacy-Preserving Sharing of Horizontally-Distributed Private Data 117

data (e.g. blood pressure, heart rate, EKG signal, X-ray images). Instead, some
form of sanitized data has to be provided to a centralized server for training and
classification purposes. It is thus imperative to discover means to protect private
information, while at the same time, be able to perform data mining tasks with
a masked version of the raw data. Can privacy and accuracy co-exist?

In fact, in many application domains, privacy concerns hinder the combining
of datasets generated from multiple sources despite the growing need to share
sensitive data. For example, military organizations may now need to share sensi-
tive security information for anti-terrorist operations, financial institutions may
need to share private customer data for anti-money laundering operations, and
so on. In all these applications, the setting is a Distributed Data Mining (DDM)
scenario [21] in which the private data sources are distributed across L ≥ 2 mul-
tiple sites. The L sites each contain private information that should be shared or
combined as they are probably inadequate on their own. To protect privacy, the
data at each site must undergo randomization locally to give sanitized data for
sharing. The sanitized data are pooled as a large training data set to construct
an accurate global classifier, as shown in Fig. 1. Note that unlike other previous
works [38], in our formulation, there is only a one-way communication to the
centralized server required. This further minimizes potential security risks when
dealing with large number of sensitive datasets at distributed sites.

In this work, we consider a privacy-preserving distributed data sanitization
approach [3] for the purpose of constructing accurate classifiers at the cen-
tralized site. Our work is very closely related to privacy-preserving classifica-
tion [23,24]. Here we focus on randomizing the data at each site independently

Fig. 1. Privacy-Preserving Distributed Data Mining (DDM) Scenario with L ≥ 2
sites. x(l) and y(l) contain the original and randomized data vectors respectively.
The Rl(·)’s are the (KDE Resampling) nonlinear randomization operators such that
y(l) = Rl(x(l)). The collection y = {y(l)}L

l=1 is to be used as the training data for a
global classifier. Testing data samples are used for cross-validation of the global classi-
fier at the one centralized site. The non-shaded and shaded cells contain private and
randomized data respectively.
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before transmitting the data for constructing a global classifier, which is similar
to the horizontally partitioned scenario presented in Du et al. [11]. Also, Lindell
and Pinkas [23] used Secure Multi-Party (or 2-party) Computation techniques
to compute a global decision tree with a (secure) ID3 algorithm. Here, we seek
a generic data sanitization approach that can be applied to any classification
algorithm on numerical data. More recently, Liu et al. [24] and Olivera et al. [28]
discussed how random projection-based multiplicative data perturbation can be
used for the privacy-preserving DDM scenario. This data perturbation method
has several nice properties, including being distance-preserving, which ensures
high accuracy in classification and clustering. However, in section 4, we will
show that the distance-preserving property can present potential compromises
on security of the data. As such, in this work, we will employ a non-distance-
preserving randomization algorithm for (i) randomizing (sanitizing) the data at
the distributed sites (ii) constructing an accurate classifier centrally.

We thus suggest Kernel Density Estimation (KDE) [29, 32, 33] Resampling.
KDE Resampling is not new [8] but it has hitherto not been applied to privacy-
preserving data mining, to the best of the authors’ knowledge. This method
possesses some very desirable properties, including asymptotic independence and
consistency, which we will discuss later. Other randomization methods in the
literature [1, 2, 7, 24, 28, 38] do not possess these appealing properties. We will
exploit these properties to preserve privacy of the distributed data and ensure
that the sanitized training samples are still adequate for the construction of
accurate classifiers. Note that in our proposed approach, we do not publish the
data’s distribution/density, since the distribution is fully parameterized by the
data records themselves and publishing it would be akin to releasing the private
data. Instead, we only transmit the sanitized feature vectors to the centralized
site. As shown in Fig. 1, the shaded cells contain the randomized data to be
transmitted to the centralized site for the construction of a classifier.

The rest of the paper is structured as follows. In section 2, we discuss in further
detail some of the relevant work in sanitization, privacy-preserving DDM and
privacy-preserving classification. In section 3, the problem will be formally stated
and mathematical notations defined. In section 4, we play the role of a malicious
intruder to illustrate the potential security risk in using distance-preserving per-
turbation methods such as the random projection-based multiplicative data per-
turbation method [24,28]. KDE Resampling will then be described in section 5.
In the same section, we will also discuss the two elegant properties of the samples
produced by KDE Resampling. Following that in section 6, we will define two
performance metrics and explain the validity. Section 7 details the evaluation
experiments and summarizes the main results. Finally, Section 8 concludes our
discussion and suggests directions for future work.

2 Related Work

Atallah et al. [3] first considered data sanitization but the work had mainly
been applied to association rule mining. Optimal sanitization is NP-hard [3]. We
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consider classification in this work and a particular randomization method that
is computationally tractable.

The addition of randomly generated Independent and Identically Distributed
(IID) noise to the original data was then proposed [1,2] for masking the private
data. The authors reconstructed the probability density function (PDF) of the
data for distribution-based data mining. In addition, they constructed decision-
trees based on the noisy data and found that the classification results were similar
to that using the original data. Muralidhar et al. [26] comprehensively examined
the statistical properties of noise addition.

However, such noise addition has since been shown to be insecure [18,20] and
other methods have been proposed. Chen et al. [7] proposed using a rotation-
based perturbation technique that ensures low accuracy loss for most classifiers.
This perturbation technique was further extended in two papers [24, 28] where
the authors used a random projection-based multiplicative data perturbation
method to perturb the data, while maintaining its utility. These two papers
described a randomization method that is distance-preserving. However, it was
shown by Caetano [5] that there is data disclosure vulnerability in adopting
these distance-preserving approaches. We will further augment Caetano’s ar-
gument in section 4 by showing that there can be other security risks with
distance-preserving approaches. Thus, we will adopt a non-distance-preserving
randomization scheme in this paper.

In Zhang et al. [38], an algebraic-based randomization approach was suggested
but it involves multiple communication from the server to the sites. This makes it
infeasible for extremely large datasets and in scenarios where the communication
channels may not be robust (e.g. military scenarios). In our formulation, there
is only a one-way communication to the centralized server (Fig. 1). We also
do not assume an underlying probability distribution that is parameterized, in
contrast to Liew et al. [22]. In addition, we generalize Liew et al. [22] to multiple
dependent confidential attributes by using multivariate densities.

Non-randomization approaches have been suggested as well. In Sweeney’s pa-
pers [31, 35], k-anonymization was proposed to generalize databases for preserv-
ing privacy. Du et al. [11] approaches the privacy-preserving classification prob-
lem from yet another perspective. Using Secure Multi-Party Computation (SMC)
techniques [4, 34, 37], parties can collaborate to deduce a global classifier or re-
gression function or just a general function, like the sum. We will not deal with
SMC techniques in this paper as SMC is not as efficient as randomization ap-
proaches [30]. However, the obtained results are more accurate than sanitization
methods. SMC solutions [4] send and receive input from each of the participat-
ing sites thus it is obvious that this method will incur higher communication cost
than randomization. For SMC techniques to be collusion-resistant, significant
communication is required between the many sites, which make this technique
non-practical. Moreover, in SMC the number of participating sites are typically
small, which is often not the case in the distributed mining context where num-
ber of sites could be few hundreds to several thousands (e.g. surveying, consumer
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browsing patterns etc.). For a detailed statistical analysis of computation over-
head of SMC, the reader is referred to Subramaniam et al. [34].

Yet another method in the literature concerns distributed clustering (unsu-
pervised classification) in which the authors chose local models before combining
them to give a global model via optimization of information theoretic quanti-
ties [25]. We focus on supervised classification here, but our method can be
extended for clustering applications.

As mentioned, we will be adopting a technique known as KDE Resampling [8].
This method has many appealing properties, including asymptotic independence
and consistency, which will be fully explained in section 5. Besides these two
appealing properties, Indyk and Woodruff [19] also demonstrated that sampling
achieves perfect privacy in 2-party polylog-communication L2 distance approx-
imations. Motivated by promising nature of sampling, we explore its proper-
ties when applied to a distributed scenario and the subsequent construction of
classifiers.

In terms of evaluation metrics, privacy has typically been measured using
mutual information [1] as well as privacy breaches [14]. Mutual information is
an average measure of disclosure while privacy breaches examine the worst-
case scenario. Because of our Distributed Data Mining (DDM) setting, we will
measure privacy in this paper using a new metric – the Distributed Aggregate
Privacy Loss, DAPL, which is related to the mutual information. Our measure
is advantageous because it explicitly takes into account the distributed nature of
the data mining scenario. Moreover, the privacy breach measure was primarily
used in the context of association rule mining [15] while in this paper, we are
concerned with supervised classification using the sanitized data from the L
independent data sites.

3 Problem Definition and Notation

We represent the storage of private information in the form of d-dimensional real
row vectors x1, . . . ,xN , where N is the number of individuals (subjects) and d
is the number of attributes. These row vectors can be vertically concatenated
into a N × d matrix x such that

x
�
=

⎡

⎢
⎣

x1
...

xN

⎤

⎥
⎦ =

⎡

⎢
⎣

x11 . . . x1d

...
. . .

...
xN1 . . . xNd

⎤

⎥
⎦ . (1)

These N individuals are associated with N targets (class labels) t1, . . . tN . The
class labels are typically not regarded as sensitive/private data [2, 38] and thus
they do not have to be randomized.

We then assume that there are L (for 2 ≤ L ≤ N) distributed data sites
(private) and 1 centralized (untrusted) server (Fig. 1), where the sanitized data
are sent to for constructing an accurate classifier using the combined training
data. Each data site possesses the private information of Nl individuals, with
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∑L
l=1 Nl = N . As in Fig. 1, we use the notation x(l) for the Nl × d matrix that

contains the Nl data vectors at site l. Thus,

x(l)
�
=

[
xT

(l,1) . . . xT
(l,Nl)

]T

, 1 ≤ l ≤ L, (2)

where x(l,j) for 1 ≤ j ≤ Nl is a sample vector at site l. Thus, x can alternatively
be written as

x =
[
xT

(1) . . . xT
(L)

]T

. (3)

Furthermore, we assume that the row vectors in x(l) are drawn from IID random
vectors with PDF fX(l)

(
x(l)

)
. We seek to find a randomization scheme for site

l, Rl such that
y(l) = Rl(x(l)), 1 ≤ l ≤ L. (4)

and Rl : R
Nl×d → R

Ml×d is the nonlinear randomization operator that maps
Nl row vectors in x(l) to Ml row vectors in y(l). y = {y(l)}L

l=1 is then sent
to the centralized server, along with the N associated targets t1, . . . , tN , where
classification can then be done using randomized data as training samples1.
The centralized server will use the pooled randomized/sanitized data as training
samples to build a classifier. We will show that the classification results using
these randomized data as training samples are compatible to the classification
results using the original private data as training samples. Before that, let us
first examine why distance-preserving approaches may be vulnerable to attacks
by malicious intruders.

4 Risk of Distance-Preserving Randomization

In this section, we play the role of a malicious attacker and attempt to de-
duce information such as the bounds on private data sanitized with a distance-
preserving perturbation method such as the random projection-based multipli-
cation method [7,24,28]. Caetano [5] had showed previously that the randomized
data can be vulnerable to disclosure. We will further augment his argument with
two lemmas here.

Lemma 1. Assume a Distributed Data Mining (DDM) scenario with L = 2
sites which contain private data matrices x(1) and x(2) respectively. Upon ran-
domization using the random projection-based multiplicative data perturbation
method2, we get y(1) = Rx(1) and y(2) = Rx(2) respectively. Let the matrix x(1)
have the structure as follows:

x(1)
�
=

[
x̃(1,1) . . . x̃(1,d)

]
(5)

1 Note that random vectors are denoted in boldface upper case and the realization is
denoted is boldface lower case. For e.g. , X(l) is a random vector and its realization
is x(l).

2 In [24], R ∈ R
K×N , a random matrix was used to perturb the data via a linear

transformation to a lower-dimensional subspace i.e. K < N .
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and its columns x̃(1,i1) to be defined as

x̃(1,i1) =
[
x̃(1,i1,1) . . . x̃(1,i1,N1)

]T
, 1 ≤ i1 ≤ d (6)

Let the other matrices x(2), y(1) and y(2) have similar structures. Further, sup-

pose we have ̂‖x̃(2,i2)‖, an estimate of the norm3 of the i2
th column of x(2) for

any 1 ≤ i2 ≤ d , then
‖x̃(1,i1)‖ ≥ γ1, (7)

for all 1 ≤ i1 ≤ d, where γ1 > 0 is a constant.

All proofs can be found in the Appendix. Lemma 1, gives us a lower bound for
the norm of all the columns of the matrix x(1), given an estimate of just one
column of the matrix x(2). Clearly, there is an obvious security risk, especially
if the private values are susceptible to being leaked. Lemma 2 builds on this to
infer a lower bound on any private data value given other data values.

Lemma 2. Assume exactly the same DDM scenario as in Lemma 1 and that
we have estimates for all the elements of x̃(1,i1) except the qth element x̃(1,i1,q)
i.e. we are given the set

Ai1,\q = {x̃(1,i1,k)|x̃(1,i1,k) ∈ x̃(1,i1), k �= q}. (8)

Then, ∣
∣x̃(1,i1,q)

∣
∣ ≥ γ2, (9)

for all 1 ≤ q ≤ N1, where γ2 > 0 is a constant.

Lemma 2 shows that if a malicious attacker were to obtain estimates of data
values except the qth element for the data vectors in any of the d dimensions, he
or she will be able to infer lower bounds on the private data value he does not
possess i.e. |x̃(1,i1,q)|. This is a potential security breach. Intuitively, there is such
a breach because along with the preservation of distances, the ‘ordering’ of the
samples is also preserved. This reasoning (and lemmas) can be extended to the
case where L > 2. Together with Caetano’s argument [5], there is clearly a need
for a new randomization method for privacy-preserving classification that is not
distance-preserving. In light of the limitations of the additive method [1,2,26] and
the random projection perturbation method [7, 24, 28], in this work, we will use
KDE Resampling, which is a non-distance-preserving randomization algorithm,
for data sanitization.

5 KDE Resampling for Data Sanitization

In this section, we will detail KDE Resampling and discuss some elegant and
useful properties of the randomized samples. We will also comment on its com-
putational tractability and compare it to the more inefficient SMC methods [23].

3 Any valid lp (for p ≥ 1) norm can be used.
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5.1 Resampling from Reconstructed PDF

For each of the L data sites (refer to Fig. 1), we will generate Ml independent
vectors in y(l) with approximately the same density as the original Nl vectors in
x(l). Ml and Nl do not necessarily have to be equal. The algorithm takes place
in two steps. Firstly, we will approximate the PDF of the vector in x(l) using
Parzen-Windows Estimation [29] also known as KDE [10,32, 33]. Then we will
sample Ml vectors from this PDF, which we denote y(l).

Kernel Density Estimation. As mentioned, for data site l, we will construct
the multivariate PDF using the Nl vectors in the Nl × d matrix x(l), which we
denote x(l,1), . . . ,x(l,Nl). This is given by

f̂X(l)

(
x(l);x(l,1), . . . ,x(l,Nl)

)
=

1
Nl

Nl∑

j=1

K
(
x(l) − x(l,j);hl

)
, (10)

where K
(
x(l) − x(l,j);hl

)
is the Epanechnikov4 (a truncated quadratic) kernel

parameterized by hl, the vector of bandwidths. In one dimension, K is given by

K1(x; h) = c h−1
(

1 −
(x

h

)2
)

I{|x| ≤ h}, (11)

where c is the normalizing constant. The multivariate version of the Epanech-
nikov kernel is a straightforward generalization by taking products of the uni-
variate kernel in Eq (11). K (·;hl), a scalar kernel function, has to satisfy the
following properties for Eq (10) to be a valid PDF [16].

K (x;hl) ≥ 0, ∀x ∈ R
d,

∫

Rd

K (ξ;hl) dξ = 1. (12)

Example 1. An illustration of how the univariate KDE works for N = 7 is shown
in Figure 2. The kernels are centered on the realizations of the multi-modal
random variable and the sum is an approximation to the true PDF. Notice that,
consistent with intuition, more probability mass is placed in areas where there
are more realizations of the random variable.

The selection of the bandwidth vector hl ∈ R
d is a very important consideration

in any KDE and will be discussed in section 5.2. For optimal performance and
accuracy of the KDE, hl is to be a function of the number of samples Nl. We
note that the Kernel Density Estimate in Eq (10) is a function of x(l) and
it is parameterized by the realizations of IID random vectors x(l,1), . . . ,x(l,Nl)
present at site l. Thus, the distribution cannot be published. Instead, we will
transmit the Ml randomized data vectors from site l to the centralized site for
the construction of a classifier.

4 The Epanechnikov kernel is optimal in the l2 sense [8].
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Fig. 2. Illustration of KDE approximation for estimation of the multimodal PDF. The
boxes show the N = 7 independent realizations of the multimodal random variable.
The individual Epanechnikov kernels (h = 1.75) are centered at the realizations. Their
sum, as detailed in Eq (10), is the Kernel Density Estimate (KDE), which is the sum
of the Epanechnikov kernels.

Remark 1. For the sake of convenience, we chose Ml and Nl to be equal. How-
ever, in practice, they do not have to be equal. In fact, one can sample fewer
data vectors than Nl, for example to choose Ml = Nl/2. From our experiments,
the classification results do not change significantly when Ml = Nl/2. We refer
the reader to Devroye’s book [9, Chapter 14] for a more rigorous treatment on
the selection of Ml.

We will subsequently abbreviate the estimate of the true PDF by f̂l
�
=

f̂X(l)

(
x(l);x(l,1), . . . ,x(l,Nl)

)
and the true PDF by fl

�
= fX(l)

(
x(l)

)
.

Resampling. Equipped with the non-parametric estimate of the true PDF f̂l,
we will then sample from this PDF to obtain Ml independent samples y(l,1), . . . ,

y(l,Ml). Noting that the random vector X(l) = (1/Nl)
∑Nl

j=1 X(l,j) is a mixture
density – it does not have to be constructed explicitly before random samples
are taken. Instead we will sample for a random integer r from 1 to Nl. Following
that we will sample a random vector from the rth kernel K

(
x(l) − x(l,r);hl

)
.

The resampling algorithm is summarized in Algorithm 1.

5.2 Discussion

In any privacy-preserving data mining research, the two key questions are: Has
privacy been preserved? Can the randomized vectors be used for data mining
purposes? In this section, we will state some very important and salient results
from [10]. These results show that the randomized samples y(l) at each of the L
sites are asymptotically independent of the original samples x(l) at the respective
L sites. Also, the KDE is consistent. We will explain why these two properties
are desirable in subsequent sections. We will explain that privacy can indeed be
preserved while the randomized samples can be employed for data mining.
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KDE Resampling Algorithm

Data : x(l,1), . . . ,x(l,Nl) for all 1 ≤ l ≤ L

Result : y(l,1), . . . ,y(l,Ml) for all 1 ≤ l ≤ L

for l ← 1 to L do
for i ← 1 to d do

σ̂l,i = Standard deviation in dimension i;
hl,i = Bandwidth in dimension i (c.f Eq (16));

endFor
for j ← 1 to Ml do

r = Random integer from 1 to Nl inclusive;
y(l,j) = Random sample vector from rth Epanechnikov kernel
K

(
y(l,j) − x(l,r);hl

)
;

endFor
endFor

Algorithm 1. KDE Resampling

Asymptotic Independence. Asymptotic independence implies that the ran-
domized samples are independent of the original samples as the number of
samples Nl tends to infinity. If the joint density of X(l) and Y(l) is denoted
as fX(l),Y(l)

(
x(l),y(l)

)
and the marginals as fX(l)

(
x(l)

)
and fY(l)

(
y(l)

)
, then

asymptotic independence can be expressed mathematically as

lim sup
Nl→∞

|ΔNl
| = 0, (13)

where the difference between the joint and product of the marginals is defined
as

ΔNl

�
= fX(l),Y(l)

(
x(l),y(l)

) − fX(l)

(
x(l)

)
fY(l)

(
y(l)

)
, (14)

and the supremum in Eq (13) is over all possible realizations of x(l) and y(l).
Another important point is that asymptotic independence is dependent on

how we select the bandwidth vector hl in Eq (10). If hl, a function of Nl, satisfies

hl,i
P−→ 0, and Nlh

d
l,i

P−→ ∞, (15)

as Nl → ∞ then asymptotic independence will be achieved [10]. Note that hl,i

is the ith element of the bandwidth vector hl. In our experiments, we are going
to use the Scott’s ‘rule-of-thumb’ [32] to select hl. Thus,

hl,i =
(

4
d + 2

)1/(d+4)

N
−1/(d+4)
l σ̂l,i, (16)

where σ̂l,i is the unbiased estimate of the standard deviation in the ith dimension
at the lth site. Scott’s ‘rule-of-thumb’ satisfies both the asymptotic conditions
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and thus, we have asymptotically independent samples. Since the samples are
asymptotically independent, probabilistic inference cannot be performed based
on the randomized samples y(l) if Nl is sufficiently large. This is very often
the case in practical data mining scenarios, where datasets are extremely large.
Privacy will thus be preserved.

Another way to illustrate this is using the privacy loss measure based on mu-
tual information [1]. Indeed, if Nl is sufficiently large (like in most practical data
mining applications), the mutual information I(x(l);y(l)) will be close to zero
(because of asymptotic independence) and thus, the privacy loss P (

x(l);y(l)
)

=
1−2−I(x(l);y(l)) will also be low. In section 6, we will define a new privacy metric,
DAPL, and argue that the asymptotic independence of the randomized samples
will result in low privacy loss when a large number of samples are available. This
property ensures that KDE Resampling is especially effective for preserving the
privacy of large datasets i.e. large Nl’s.

Consistency of KDE. It is well known [10,33] that the KDE f̂l, as defined in
Eq (10) is consistent i.e.

lim
Nl→∞

E

[∫ ∣
∣
∣f̂l − fl

∣
∣
∣

]

= 0, 1 ≤ l ≤ L, (17)

if the asymptotic conditions in Eq (15) are satisfied. This means that as the
number of samples at each site Nl becomes large, the KDE f̂l(·) becomes in-
creasingly accurate. This property is important and useful because we can treat
the collection of randomized samples at all the L sites {y(l)}L

l=1 as the training
data for supervised classification purposes since the distribution it is drawn from
is consistent.

Remark 2. We note that because of resampling, our randomization algorithm
does not suffer from the problems of [7,24,28] that were highlighted in section 4 –
namely that of being able to derive bounds on private data given other (relevant)
private information. This is one of the key advantages of our novel randomization
technique as it removes the inherent ordering of the feature vectors by resampling
randomly.

Low ComputationalComplexity. The random vector X(l)=(1/Nl)
∑Nl

j=1X(l,j)
is a mixture density with Nl components. Thus, we do not need to construct the
full KDE. This is typically the bottleneck for any algorithm that uses the Kernel
Density Estimate (KDE). Thus the randomized vectors can be obtained simply
by:

1. First, estimating the kernel bandwidths hl,i, ∀(l, i) ∈ {1, . . . , L}× {1, . . . , d}
using Eq (16).

2. Generating a random (integer) index r from 1 to Nl.
3. Then drawing a random sample vector from the rth multivariate Epanech-

nikov kernel.
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This is detailed more precisely in Algorithm 1. Each step in the algorithm is
tractable. There is no multi-way communication between the parties, unlike in
SMC [34,37]. In conclusion, the KDE Resampling algorithm is computationally
feasible.

Possible Application to Horizontally or Vertically Partitioned Data.
We have presented a randomization algorithm for the purpose of randomizing
horizontally partitioned data over L sites. The extension to the vertically parti-
tioned scenario, where different sites hold different attributes, is not trivial unless
attributes are assumed to be independent as in [36]. KDE Resampling requires
multiple full data vectors to be most effective and accurate.

6 Performance Metrics

For evaluation, the two performance metrics that we will use to quantify pri-
vacy and accuracy are the Distributed Aggregate Privacy Loss DAPL and the
Deterioration of Classification φ respectively.

6.1 Distributed Aggregate Privacy Loss DAPL

The privacy loss is a function of mutual information [1], which depends on the
degree of independence between the randomized samples and the original sam-
ples. We have decided to design our privacy metric based on mutual information
because the task we are handling is supervised classification. In Evfimievski [14],
the notion of security breach was raised. In this work, we focus more on privacy
loss, which is an average measure of privacy disclosure. Moreover, the privacy
measures proposed by the same paper were more applicable to association rule
mining [15]. Thus, in this paper, we use DAPL, which is intimately related
to mutual information. Mutual information measures the average amount of
information disclosed when the randomized data is revealed. Indeed, [8] also
mentioned that

“. . . for the sake of asymptotic sample independence, it suffices that the
expected l1 distance between [f̂l] and [fl] tends to zero with [Nl].”

Because expected l1 distances provide us with the degree of independence, we
will define our privacy loss as a weighted average of expected l1 distances.

Definition 1. The Distributed Aggregate Privacy Loss DAPL is defined as
half of the weighted average of the expected l1 distance between the estimate f̂l

and fl, over the L sites. That is,

DAPL �
=

1
2

(
L∑

l=1

cl E

[∫ ∣
∣
∣f̂l − fl

∣
∣
∣

])

, (18)

where cl
�
= Nl/N for 1 ≤ l ≤ L is the proportion of samples at site l. Clearly,

0 ≤ DAPL ≤ 1.
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The DAPL is low (≈ 0) when privacy loss is low and vice versa. Finally, we em-
phasize that our privacy loss metric DAPL is related to, but not exactly identical
to, the privacy loss metric defined in [1]. The difference is in our considering of
the distributed scenario here. Furthermore, we also measure the degree of inde-
pendence using the expected l1 distance between f̂l and fl as opposed to using
mutual information. Since the l1 distance → 0 as Nl → ∞ [33], the asymptotic
independence property ensures low DAPL when Nl is large.

We emphasize that Eq (18) is a reasonable privacy measure because inde-
pendence of the original and randomized data samples is measured in terms of
expected l1 distances between the original density and the KDE [8].

Example 2. For an intuitive feel of Eq (18), let us consider a single site with
Nl samples. Suppose Nl is large, then an accurate KDE will be constructed.
Subsequently, because we sample from a randomly chosen kernel (out of the Nl

kernels whose means are the original data vectors), the resulting randomized data
vectors will be approximately independent of the original samples. On the other
hand, suppose Nl is small, say only two samples, then the resulting randomized
data vectors will be strongly dependent on the positions, in R

d, of the two original
samples, resulting in less ‘randomness’ and greater privacy loss. Another relevant
paper by Dwork [13] applies the definition of differential privacy to the case of
distributed computations, much like our paper.

6.2 Deterioration of Classification φ

In any supervised classification algorithm, the usual performance metric is the
probability of error, which is also known as the classification error and is defined
as [17]

P (err)
�
= 1 −

|C|∑

i=1

∫

Ωi

p (ξ|Ci)P (Ci) dξ, (19)

where P (Ci) is the prior probability (known a priori) of class Ci and
∫

Ωi
p (ξ|Ci)

P (Ci) dξ is the conditional probability of correct classification5 for given the
sample is from Ci. |C| denotes the total number of classes.

Definition 2. The Deterioration of Classification φ is defined as:

φ
�
= Prand(err) − Pori(err), (20)

where Pori(err) (resp. Prand(err)) is the classification error using the original
(randomized) samples as training data.

Clearly, the closer φ is to zero, the greater the utility of the randomized samples
and the higher the accuracy. So, we want φ to be as small as possible.

5 Also known as a ‘hit’ in the detection theory literature.
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7 Simulation Results

In this section, we will detail the classification experiments on five diverse
datasets with continuous, numerical values using three different classifiers. We
will consider the distributed setting in Fig. 1. We will empirically show that the
classification error is invariant to original and randomized data being used as
training examples.

7.1 Experimental Setup of Distributed Setting

In all our experiments, we consider a distributed scenario (like in Fig. 1) with
L sites, where L is taken over a range of integers. Hence, suppose there are N
data points (and N is a multiple of L), then each site will contain Nl = N/L
points. If N is not a multiple of L, minor adjustments are made. Each of the Nl

data points at the L sites are randomized using the algorithm detailed section 5.
The data is then pooled to the centralized site for the construction of various
classifiers. The classification accuracy is compared to the baseline – the result
when the data is not randomized.

Table 1. Our five datasets from LIBSVM and the UCI Machine Learning Repository

Dataset #Class #Dim(d) #Trg(N) #Test

Iris 2 4 120 30

SVMGuide1 2 4 3089 4000

Diabetes 2 8 576 192

Breast-Cancer 2 10 512 171

Ionosphere 2 34 263 88

7.2 Datasets

We obtained five numerical datasets from LIBSVM [6] and the UCI Machine
Learning Repository [27]. These are summarized in Table 1. These include the
common Iris Dataset and the more difficult Pima Indians Diabetes Dataset.

We pre-process the data by normalizing the values in each dimension to the
interval [−1, 1] before the randomization and classification processes. As men-
tioned in the above section, for each dataset, we performed the randomization
followed by classification using a different number of sites L. For example, for
the Iris dataset6 (see Figure 3), L was chosen to be from 1 to 4.

For the purpose of validating the classification accuracy, the raw data (except
for the SVMGuide1 dataset7) was randomly split into a training set (≈75%)
6 For the Iris dataset, we merged the Setosa and the Versicolour classes into one

single class so that we have a binary classification problem. Even though all of our
analysis can be extended to the multi-class scenario, it seems not too relevant for
the questions addressed here.

7 SVMGuide1 had already been partitioned into training and testing data a priori [6]
and thus we use the given partitioning to test the classifiers constructed.
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and a testing set (≈25%). This is also commonly-known in the literature as
random subsampling 4-fold cross-validation. For consistent results, we averaged
the classification errors over 100 independent random seeds.

Finally, the number of vectors we resampled Ml is the same as the number of
original vectors Nl at all L sites. However, as argued in section 5.1, Ml does not
have to be the same as Nl. For brevity, we only report the case where Ml = Nl in
this section. However, an obvious advantage of using a fewer number of samples
is reduction in complexity.

7.3 Classification Techniques

We used three standard classification techniques on the combined randomized
data from the L sites y(1), . . . ,y(L) and the original data in x. These techniques
include:

1. Artificial Neural Networks (ANN) by trained by error backpropagation.
2. k-Nearest Neighbors classifier (kNN) with k = 11.
3. Näıve Bayes classifier (NB) with each attribute or dimension (d) assumed to

follow a Gaussian distribution.

The details of these classification techniques can be found in any standard pat-
tern classification text. See for instance [17, 12].

First, we used the above three classification techniques to obtain initial classi-
fication results on the original data samples. These are shown in Table 2. These
results, denoted Pori(err), will be compared to Prand(err), the classification re-
sults on the randomized samples in a distributed setting with L sites. The basis
for comparison is their difference φ

�
= Prand(err) − Pori(err) (cf. section 6.2).

Table 2. Pori(err) using original data x as training samples for various classification
techniques. Refer to Figs. 3 to 7 for φ = Prand(err) − Pori(err).

Dataset ANN kNN NB

Iris 0.0352 0.0346 0.1230

SVMGuide1 0.0389 0.0328 0.0695

Diabetes 0.2441 0.2611 0.2263

Breast-Cancer 0.0312 0.0214 0.0396

Ionosphere 0.1255 0.1522 0.0000

7.4 Results of Distributed Experiments

The results are shown in Figures 3 to 7. Sub-figures (a) show the values of the
Deterioration of Classification φ, which is defined in Eq (20). The three lines
show φ for different classification techniques ANN (in crosses – x), kNN (in
circles – o) and NB (in plusses – +). We plot the Distributed Aggregate Privacy
Loss DAPL for the two classes in sub-figures (b) (in crosses – x and circles – o).
From the plots, we made the following observations.
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Fig. 3. Iris; (a) Deterioration of Classification φ (Key: x - ANN, o - kNN, + - NB);
(b) Distributed Aggregate Privacy Loss DAPL (Key: x - Class C1, o - Class C2); L
was chosen to be from 1 to 4 for the commonly-encountered Iris dataset. Note from
(a) that φ increases as L is increased, as the number of data records Nl at each site is
reduced. However, the Deterioration of Classification φ is less than 3% and in this case,
the Näıve Bayes classifier (+) performs the best (least deterioration). DAPL increases
as the number of sites L increases because there are fewer samples at each site (cf.
example in section 6.1).

Fig. 4. SVMGuide1; (a) Deterioration of Classification φ (Key: x - ANN, o - kNN, + -
NB); (b) Distributed Aggregate Privacy Loss DAPL (Key: x - Class C1, o - Class C2);
The SVMGuide1 dataset describes an astroparticle application. For this dataset, we
observe that the φ does not increase significantly across L. There is little correlation
between the number of sites L and the classification errors Prand(err) or the Deteriora-
tion of Classification φ. Comparing the results in (a) with Table 2, we observe that the
deterioration is not too severe. However, as expected, Privacy Loss DAPL increases
as the number of sites L increases for the same reason as stated in the caption for the
Iris dataset.

The classification errors Prand(err) and Pori(err) are close. This can be seen
from sub-figures (b) for each of the five datasets, where φ deviates from zero by
at most only 3%. In general, Näıve Bayes (NB) and Artificial Neural Networks
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Fig. 5. Diabetes; (a) Deterioration of Classification φ (Key: x - ANN, o - kNN, +
- NB); (b) Distributed Aggregate Privacy Loss DAPL (Key: x - Class C1, o - Class
C2); The diabetes dataset exhibits the same characteristics as the SVMGuide1 dataset.
However, in this case, it is somewhat surprising to note that in most cases, the ANN
classifier constructed based on the randomized samples results in a lower classification
error as compared to the one constructed based on the original samples.

Fig. 6. Breast-Cancer; (a) Deterioration of Classification φ (Key: x - ANN, o - kNN,
+ - NB); (b) Distributed Aggregate Privacy Loss DAPL (Key: x - Class C1, o - Class
C2); For the Breast-Cancer dataset, the Deterioration of Classification φ stays fairly
constant across all L. Indeed, the NB classifier (+) constructed based on the randomized
samples is better (improves by 1%) than the classifier constructed using the original
samples. Again, we observe that, as expected, Privacy Loss DAPL increases as L
increases because the number of samples at each site Nl decreases.

(ANN) perform better as compared to k-Nearest Neighbors (kNN) as the De-
terioration of Classification φ is closest to zero for all the datasets for NB and
ANN.

Except for the Iris dataset, there is no correlation between the number of sites
L and the classification errors Prand(err) or the Deterioration of Classification
φ. Consequently, the randomized data is still amenable to data mining tasks
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Fig. 7. Ionosphere; (a) Deterioration of Classification φ (Key: x - ANN, o - kNN, + -
NB); (b) Distributed Aggregate Privacy Loss DAPL (Key: x - Class C1, o - Class C2);
In this dataset, we observe that the ANN classifier constructed based on the pooled
randomized data samples from L sites results in a smaller classification error. The kNN
classification technique does results in a worse classification error but, in the worst case,
the performance does not deteriorate by more than 3%. Compared with the baseline
in Table 2, we see that this deterioration is not too severe.

irregardless of L. This is because of the consistency of the KDE as discussed in
section 5.2.

Finally, from sub-figures (b), we observe that there is a general increasing
trend for the DAPL. This is because as the number of sites L increases, the
number of individuals at each site Nl decreases. Consequently, the expected l1
difference between the the original and reconstructed PDFs increases and the
privacy loss DAPL also increases. Thus, with the use of KDE Resampling, there
is a compromise between L and DAPL. The DAPL can be further reduced by
improving the simple sampling algorithm suggested in Algorithm 1. This can be
done by improving selection of the optimal of hl [32, 33] by possibly optimizing
over non-diagonal bandwidth matrices, which enhances generality but increases
complexity.

8 Conclusions

In this paper, we have suggested a novel method for data sanitization for the pur-
pose of sharing private data at distributed data sites for constructing a classifier.
In our setup, we are provided with Nl data records at each site and we apply the
randomization algorithm at each site independent of other sites. Then the data
is pooled together for classification at the centralized site. As mentioned in the
introduction, this problem has ramifications in a variety of settings, including
the sharing of patients’ private records and for collaborations across military or
financial organizations for various security operations.

We employed Kernel Density Estimation (KDE) Resampling to sample for
new, representative data vectors given the original private data. Our experi-
ments on five datasets conducted in a distributed data setting illustrate that
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resampling provides sanitized/randomized data samples that can be adequately
employed for a particular data mining task – supervised classification. In sum-
mary, our data sanitization algorithm has the following advantages over some
existing approaches for privacy-preserving classification.

KDE Resampling provides samples that are asymptotically independent and
the KDE is consistent. We have explained, that the former ensures low privacy
loss, while the latter preserves the data’s integrity and hence, its utility.

We have shown that the classification errors using the randomized data col-
lated from the distributed sites as training samples differs from that using the
original data as training samples by less than 3% for all the datasets. We have
also shown that various data mining algorithms can be applied on the random-
ized training data.

In contrast to random projection-based multiplicative data perturbation
methods [7, 24, 28], a malicious intruder cannot establish bounds on the pri-
vate data using KDE Resampling. In fact, Caetano [5] also argued that random
projection-based randomization may be susceptible to disclosure. KDE Resam-
pling thus ensures greater security as it involves an element of random swapping,
which enhances privacy by losing the ordering of the feature vectors.

In contrast to [38], our framework as shown in Figure 1 does not involve multi-
way communication from the centralized server to the individual sites and vice
versa. Since our technique involves only a one-way communication from the sites
to the server, it is feasible for large datasets. Besides, one-way communication
reduces the risk of inadvertent disclosure of private data.

Although SMC techniques may provide better privacy protection and accu-
racy as compared to randomization methods, they suffer from inefficiency [23,30,
34]. Our algorithm generates samples in an efficient fashion, because each step
of the algorithm is tractable and there is no need for multi-way communication.

Finally, we hope to re-examine the issue of the privacy metric. Since DAPL
only looks at the l1 distances between the two distributions the point-wise dis-
tance can be rather significant. Thus, the privacy of any individual may be
compromised, without the knowledge of whether the data vector happens to
belong to the set with unusually high distance between the two distributions.
Though the probability of this event may be low, it is precisely the privacy of
outliers that we ought to protect. Another point worth noting is the following
– our assumption that the data records is generated from IID random variables
is may not be entirely realistic in some practical applications. We hope to relax
this assumption in our future research.
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LNCS, vol. 3178, pp. 83–99. Springer, Heidelberg (2004)

12. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Chichester
(2000)

13. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Our-
selves: Privacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

14. Evfimievski, A.: Randomization in privacy preserving data mining. ACM SIGKDD
Explorations Newsletter 4, 43–48 (2002)

15. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining
of association rules. In: Proc. of 8th ACM SIGKDD Int. Conf. on Knowledge
Discovery in Databases and Data Mining, pp. 217–228 (2002)

16. Fukunaga, K., Hostetler, L.D.: The estimation of gradient of a density function with
applications to pattern recognition. IEEE Transactions on Information Theory 21,
32–40 (1975)

17. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, San Francisco (2000)

18. Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data.
In: Proc. of ACM SIGMOD Conf., Baltimore, MD, pp. 37–48 (2005)

19. Indyk, P., Woodruff, D.: Polylogarithmic private approximations and efficient
matching. In: Proc. of Theory of Cryptography Conf., NY (2006)

20. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: Proc. of 3rd IEEE Int.
Conf. on Data Mining, Washington, DC, USA, pp. 99–106 (2003)

http://www.csie.ntu.edu.tw/~cjlin/libsvm


136 V. Yan Fu Tan and S.-K. Ng

21. Kargupta, H., Park, B., Hershbereger, D., Johnson, E.: Collective data mining: A
new perspective toward distributed data mining. In: Advances in distributed data
mining, pp. 133–184 (1999)

22. Liew, C.K., Choi, U.J., Liew, C.J.: A data distortion by probability distribution.
ACM Trans. Database Systems (TODS) 10, 395–411 (1985)

23. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–53. Springer, Heidelberg (2000)

24. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data
perturbation for privacy preserving distributed data mining. IEEE Transactions
on Knowledge and Data Engineering (TKDE) 18, 92–106 (2006)

25. Merugu, S., Ghosh, J.: A privacy-sensitive approach to distributed clustering. Spe-
cial issue: Advances in pattern recognition 26(4), 399–410 (2005)

26. Muralidhar, K., Parsa, R., Sarathy, R.: A general additive data perturbation
method for database security. Management Science 19, 1399–1415 (1999)

27. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine
Learning Databases, University of California, Irvine, Dept. of Information and
Computer Sciences (1998),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

28. Oliveira, S.R., Zaiane, O.R.: A privacy-preserving clustering approach toward se-
cure and effective data analysis for business collaboration. Computers & Secu-
rity 26(1), 81–93 (2007)

29. Parzen, E.: On the estimation of a probability density function and mode. Annals
of Mathematical Statistics 33, 1065–1076 (1962)

30. Pinkas, B.: Cryptographic techniques for privacy preserving data mining. SIGKDD
Explorations 4, 12–19 (2002)

31. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. In: Proc.
of the IEEE Symposium on Research in Security and Privacy, Oakland, CA (May
1998)

32. Scott, D.W.: Multivariate Density Estimation. Theory, Practice and Visualization.
Wiley, Chichester (1992)

33. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
& Hall, London (1986)

34. Subramaniam, H., Wright, R.N., Yang, Z.: Experimental analysis of privacy-
preserving statistics computation. In: Proc. of the Workshop on Secure Data Man-
agement (in conjunction with VLDB 2004) (2004)

35. Sweeney, L.: k -anonymity: A model for protecting privacy. Int. Journal of Uncer-
tainty Fuzziness Knowledge Based Systems 10, 557–570 (2002)

36. Vaidya, J., Clifton, C.: Privacy preserving Näıve Bayes classifier for vertically par-
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A Proofs of Lemmas 4.1 and 4.2

Proof. Since random projection-based multiplicative data perturbation method
is orthogonal on expectation [24], E

[
YT

(1)Y(2)

]
= xT

(1)x(2), the columns are

also orthogonal on expectation i.e. E

[
ỸT

(1,i1)Ỹ(2,i2)

]
= x̃T

(1,i1)x̃(2,i2) for all 1 ≤
i1, i2 ≤ d. Using the Cauchy-Schwarz Inequality, we have

x̃T
(1,i1)x̃(2,i2) ≤ ‖x̃(1,i1)‖‖x̃(2,i2)‖. (21)

Since we are also given ̂‖x̃(2,i2)‖, we can bound ‖x̃(2,i2)‖,

‖x̃(1,i1)‖ ≥
E

[
ỸT

(1,i1)Ỹ(2,i2)

]

̂‖x̃(2,i2)‖
�
= γ1, (22)

This yields Eq (7). Lemma 4.2 follows directly from Lemma 1 by subtracting
elements contained in the set Ai1,\q as defined in Eqn (8). ��
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Abstract. Model selection is an important problem in statistics, ma-
chine learning, and data mining. In this paper, we investigate the prob-
lem of enabling multiple parties to perform model selection on their dis-
tributed data in a privacy-preserving fashion without revealing their data
to each other. We specifically study cross validation, a standard method
of model selection, in the setting in which two parties hold a vertically
partitioned database. For a specific kind of vertical partitioning, we show
how the participants can carry out privacy-preserving cross validation in
order to select among a number of candidate models without revealing
their data to each other.

1 Introduction

In today’s world, a staggering amount of data, much of it sensitive, is distributed
among a variety of data owners, collectors, and aggregators. Data mining pro-
vides the power to extract useful knowledge from this data. However, privacy
concerns may prevent different parties from sharing their data with others. A
major challenge is how to realize the utility of this distributed data while also
protecting data privacy.

Privacy-preserving data mining provides data mining algorithms in which
the goal is to compute or approximate the output of one or more particular
algorithms applied to the joint data, without revealing anything else, or at least
anything else sensitive, about the data.

To date, work on distributed privacy-preserving data mining has been pri-
marily limited to providing privacy-preserving versions of particular data mining
algorithms. However, the data miner’s task rarely starts and ends with running
a particular data mining algorithm. In particular, a data miner seeking to model
some data will often run a number of different kinds of data mining algorithms
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and then perform some kind of model selection to determine which of the result-
ing models to use. If privacy-preserving methods are used for determining many
models, but then the model selection either is carried out without maintaining
privacy or cannot be carried out due to privacy constraints, then the desired
privacy and utility cannot simultaneously be achieved.

In this paper, we introduce the notion of privacy-preserving model selection.
We specifically consider cross validation, which is a popular method for model
selection. In cross validation, a number of different models are generated on a
portion of the data. It is then determined how well the resulting models perform
on the rest of the data, and the highest performing model is selected. Cross
validation can also be used to validate a single model learned from training data
on test data not used in the generation of the model, to determine whether the
model performs sufficiently well and limit the possibility of choosing a model
that overfits the data.

We provide a partial solution to privacy-preserving model selection via cross
validation. We assume a very specific kind of vertical partitioning, which has
previously been considered by Vaidya and Clifton [31], in which one party holds
all the data except the class labels, and a second party holds all the class labels.
In this setting, we show how to perform model selection using cross validation in
a privacy-preserving manner, without revealing the parties’ data to each other.

A practical example of this kind of partitioning might occur in a research
project seeking to explore the relationship between certain criminal activities
and the medical histories of people involved in these activities. A local hospital
has a database of medical histories, while the police department has the criminal
records. Both the hospital and police department would like to provide assistance
to this project, but neither of them is willing or legally able to reveal their data
to the other. It is therefore a technical challenge to find the right model over this
distributed database in a privacy-preserving manner. Specifically, we can view
the medical histories and the criminal records as two parts of a vertically parti-
tioned database. We simplify the criminal records to labels on local residents for
whether they are involved in the criminal activities. Then the question becomes
finding the right model to predict this label on an individual using his or her
medical history data. We require that the medical histories not be revealed to
the police department and that the labels not be revealed to the hospital.

Our main contribution is a privacy-preserving model selection protocol for
this setting. Specifically, there is a database vertically partitioned between two
participants. One participant has all the data except the class labels; the other
participant has all the class labels. Our privacy-preserving cross validation so-
lution enables the parties to privately determine the best among a number of
candidate models for the data, thereby extending the privacy of the data from
the initial model computation through to the model selection step.

We begin by discussing related work in Section 2. We introduce some crypto-
graphic primitives in Sections 3 and 4. Our main protocol is shown in Section 5.
In Section 6, we discuss possible extensions including generalizing our solution
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to arbitrary vertically partitioned data and determining which of a number of
models is best without revealing the models that are not chosen.

2 Related Work

Existing techniques in privacy-preserving data mining can largely be categorized
into two approaches. One approach adopts cryptographic techniques to provide
secure solutions in distributed settings, as pioneered by Lindell and Pinkas [25].
Another approach randomizes the original data such that certain underlying
patterns are still kept in the randomized data, as pioneered by Agrawal and
Srikant [3]. Generally, the cryptographic approach can provide solutions with
perfect accuracy and perfect privacy. The randomization approach is much more
efficient than the cryptographic approach, but typically suffers a tradeoff between
privacy and accuracy.

In the randomization approach, original data is randomized by adding noise
so that the original data is disguised but patterns of interest persist. The ran-
domization approach enables learning data mining models from the disguised
data. Different randomization approaches have been proposed to learn different
data mining models, such as decision trees [3,8] and association rules [28,11,10].
Several privacy definitions for the randomization setting have been proposed to
achieve different levels of privacy protection [3, 1, 10], though privacy problems
with randomization approach have also been discussed [23, 17].

In the cryptographic approach, which we follow in this paper, the goal is
to enable distributed learning of data mining models across different databases
without the database owners revealing anything about their data to each other
beyond what can be inferred from the final result. In principle, general-purpose
secure multiparty computation protocols [16, 35] can provide solutions to any
distributed privacy-preserving data mining problem.

However, these general-purpose protocols are typically not efficient enough
for use in practice when the input data is very large. Therefore, more efficient
special-purpose privacy-preserving protocols have been proposed for many spe-
cial cases. These address a number of different learning problems across dis-
tributed databases, such as association rule mining [29,21], ID3 trees [25], cluster-
ing [30,19], naive Bayes classification [22,31], and Bayesian networks [27,34], as
well as a variety of privacy-preserving primitives for simple statistical computa-
tions including scalar product [7,4,29,33,13,14], finding common elements [13,2],
and computing correlation matrices [26].

In the cryptographic approach, privacy is quantified using variants of the
standard cryptographic definition for secure multiparty computation. Intuitively,
parties involved in the privacy-preserving distributed protocols should learn only
the data mining results that are their intended outputs, and nothing else.

Most privacy-preserving data mining solutions to date address typical data
mining algorithms, but do not address necessary preprocessing and postprocess-
ing steps. Recent work addresses privacy preservation during the preprocessing
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step [20]. In this work, we begin the exploration of extending the preservation of
privacy to the postprocessing step, thereby maintaining privacy throughout the
data mining process.

3 Cryptographic Tools

In this section, we briefly overview cryptographic concepts and primitives that
we use.

3.1 Privacy Definition

In this paper, we define privacy using a standard definition used in secure mul-
tiparty computation [15]. In particular, we consider the privacy definition in the
model of semi-honest adversaries. A semi-honest adversary is assumed to follow
its specified instructions, but will try to gain as much information as possible
about other parties’ inputs from the messages it receives.

The proofs of privacy in this paper are carried out using the simulation
paradigm [15]. Formally, let Π be a 2-party protocol for computing a func-
tion f : (x1, x2) → (y1, y2). The view of the ith party (i ∈ {1, 2}) during an
execution of Π , denoted by viewi(x1, x2), consists of the ith party’s input xi, all
messages received by the ith party, and all internal coin flips of the ith party.
We say that Π privately computes f against semi-honest adversaries if, for each
i, there exists a probabilistic polynomial-time algorithm Si (which is called a
simulator), such that

{Si(xi, yi)}x1,x2

c≡ {(viewi(x1, x2)}x1,x2 ,

where
c≡ denotes computational indistinguishability. (See [15] for the definition

of computational indistinguishability. Intuitively, it states that a polynomially-
bounded computation cannot distinguish between the two distributions given
samples from them.)

Intuitively, this definition states that, based on the input and output of each
participant, we should be able to “simulate” the view of that participant. There-
fore, each participant learns nothing during the computation that would not be
learned if Alice and Bob gave their data to a trusted third party who computed
the results y1 and y2 and returned them to Alice and Bob, respectively.

As a privacy definition, this definition has some advantages but it also has
some limitations. Among its advantages are that it allows provable guarantees
that nothing was leaked during the computation, and that if multiple subpro-
tocols are combined properly, their combination does not leak any information.
A notable limitation of this definition is that it does not say anything about
the privacy of the final result, leaving that determination as a separate privacy
decision.
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3.2 ElGamal Cryptosystem

A public key cryptosystem consists of three algorithms: the key generation algo-
rithm, the encryption algorithm, and the decryption algorithm. We make use of
the ElGamal cryptosystem [9].

In the ElGamal cryptosystem, the key generation algorithm generates the
parameters (G, q, g, x), where G is a cyclic group of order q with generator g,
and x is randomly chosen from {0, . . . , q−1}. The public key is (h, G, q, g) where
h = gx, and the private key is x.

In order to encrypt a message m to Alice under her public key (h, G, q, g), Bob
computes (c1 = m ·hk, c2 = gk), where k is randomly chosen from {0, . . . , q−1}.
To decrypt a ciphertext (c1, c2) with the private key x, Alice computes c1(cx

2)−1

as the plaintext message.
ElGamal encryption is semantically secure under the Decisional Diffie-Hellman

(DDH) assumption [5], which we assume throughout this paper. One group fam-
ily in which DDH is commonly assumed to be intractable is the quadratic residue
subgroup of Z

∗
p (the multiplicative group mod p) where p is a safe prime (i.e.,

a prime number of the form p = 2p′ + 1 for a prime p′). ElGamal encryption
has a useful randomization property. Specifically, given an encryption of M , it is
possible to compute a different (and random) encryption of M without knowing
the private key.

4 Privacy-Preserving Hamming Distance and Generalized
Hamming Distance

In this section, we provide new, simple, efficient, privacy-preserving protocols for
computing the Hamming distance and generalized Hamming distance between
two vectors. These will be used in our main protocol.

4.1 Privacy-Preserving Hamming Distance

In this protocol, Alice has a vector A = (a1, ..., an) and Bob has a vector B =
(b1, ..., bn), where A and B contain only binary values. In our setting, Alice is
supposed to learn the Hamming distance of their two vectors, and Alice and
Bob are supposed to learn nothing else about each other’s vectors. (In the semi-
honest setting, such a protocol can easily be transformed into a protocol where
both Alice and Bob learn the result, by having Alice tell Bob the answer.)

We note that private solutions already exist for this problem. For example, an
efficient solution is given by Jagannathan and Wright [20] based on homomorphic
encryption. Yao’s secure two-party computation could be used [35]; it computes
the result based on computation using a “garbled” circuit. Alternately, the secure
two-party computation techniques of Boneh, Goh, and Nissim [6] could be used,
in the form where the output is multiple bits; this relies on computationally
expensive bilinear pairing, as well as on a new computational assumption. We
also note that if one is willing to accept an approximation to the Hamming
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distance, it is possible to achieve this with sublinear communication complexity
while meeting the privacy requirements [12, 18].

In this section, we describe a simple, efficient, alternative solution based on
the ElGamal cryptosystem. As shown in the following section, a modification of
this solution also solves the generalized Hamming distance problem.

Privacy-Preserving Hamming Distance Protocol

Input: Vectors A = (a1, . . . , an) and B = (b1, . . . , bn) held by Alice and Bob,
respectively, such that ai, bi ∈ {0, 1} for 1 ≤ i ≤ n.

Output: Alice learns the Hamming distance of A and B.

1. For 1 ≤ i ≤ n, if ai = 0, then Alice sends ei = E(g) to Bob; Otherwise, Alice
sends ei = E(g−1) to Bob. (Obviously, fresh, independent randomness is used
in generating each of these encryptions.) For each i, the resulting encryption
is a two-part ciphertext ei = (ci,1, ci,2).

2. For 1 ≤ i ≤ n, if bi = 0, then Bob rerandomizes ei to get e′
i; otherwise,

Bob sets e′
i to a rerandomization of e−1

i = ((ci,1)
−1, (ci,2)

−1). Bob sends a
permuted vector including all e′

i to Alice.
3. Alice decrypts all received e′

i and counts how many of the decryptions are
equal to g−1. This number is equal to

∑n
i=1(ai ⊕ bi) = dist(A, B).

Fig. 1. Privacy-Preserving Hamming Distance Protocol

In our protocol, we assume Alice has an ElGamal key pair (x, y) (x ∈ [0, q−1],
where q is the order of G; y ∈ G) such that y = gx ∈ G. Here, x is the private key,
which is known only to Alice, and y is the public key, which is also known to Bob.
We use E(m) to denote an encryption of m by public key y. All computations
in the protocol and throughout this paper take place in G, which is chosen
large enough to ensure that the final distance result is correct as an integer. The
output of this protocol is the Hamming distance dist(A, B) =

∑n
i=1(ai⊕bi). The

basic idea is that we use g to represent 0 and g−1 to represent 1. The protocol
is shown in Figure 1.

Theorem 1. Under the DDH assumption, the protocol in Figure 1 for binary-
valued inputs privately computes the Hamming distance in the semi-honest model.

Proof. We first show correctness—i.e., that Alice’s output is the correct Ham-
ming distance. In Step 1, for 1 ≤ i ≤ n, Alice computes

ei = (ci,1, ci,2) =
{

E(g) if ai = 0
E(g−1) if ai = 1

and sends these to Bob. In Step 2, for 1 ≤ i ≤ n, Bob produces e′i. If bi = 0,
then e′i is a rerandomization of the encryption ei. In this case, e′i encrypts the
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same cleartext g or g−1 that ei does (even though Bob does not himself know this
cleartext). If, on the other hand, bi = 1, then Bob sets e′i to be a rerandomization
of (ci,1

−1, ci,2
−1). Assuming ki is the random value used in Alice’s encryption of

mi ∈ {g, g−1}, then:

(ci,1
−1, ci,2

−1) = ((mi · hki)−1, (gki)−1) = (mi
−1 · h−ki , g−ki).

Once rerandomized so as to use fresh randomization, this is a valid encryption
of mi

−1. Thus, if mi = g, then e′i is an encryption of g−1, and if mi = g−1, then
e′i is an encryption of g. It further follows that e′i is an encryption of g−1 if and
only if ai �= bi. (If ai = bi, then e′i is an encryption of g.) Therefore, the number
of g−1 decryptions Alice obtains in Step 3 is the desired Hamming distance.

To show privacy, we need to demonstrate simulators S1 for Alice and S2 for
Bob. We construct S1 as follows. S1 simulates all internal coin flips of Alice as
described in the protocol. S1 simulates the message from Bob to Alice using a
randomly permuted vector of n ElGamal ciphertexts; among these n ciphertexts,
the number of encryptions of g−1 should be equal to the output of Alice; all the
remaining ciphertexts should be encryptions of g.

We construct S2 as follows. S2 simulates all internal coin flips of Bob as de-
scribed in the protocol. S2 simulates the message from Alice to Bob using n
random ElGamal ciphertexts. The computational indistinguishability immedi-
ately follows from the semantic security of the ElGamal cryptosystem under the
DDH assumption.

4.2 Privacy-Preserving Generalized Hamming Distance

In this protocol, we consider the case that A = (a1, . . . , an) and B = (b1, . . . , bn)
where each ai and each bi has a finite domain {1, ..., s} rather than a binary
domain. For these general discrete-valued ai and bi, we consider the Boolean
difference function:

diff(ai, bi) =
{

0 if ai = bi

1 otherwise.

We define the generalized Hamming distance as gdist(A, B) =
∑n

i=1 diff(ai, bi).
Our protocol for privately computing generalized Hamming distance, shown in
Figure 2. Like the Hamming distance protocol, the generalized Hamming dis-
tance protocol also relies on the ElGamal cryptosystem. In this case, we take
advantage of homomorphic properties obtained by encrypting in the exponent.
That is, we encrypt a message m by using gm as the cleartext in the ElGamal
system rather than using m.

Theorem 2. Under the DDH assumption, the protocol in Figure 2 for general
discrete-valued inputs privately computes the generalized Hamming distance in
the semi-honest model.
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Privacy-Preserving Generalized Hamming Distance Protocol

Input: Vectors A = (a1, . . . , an) and B = (b1, . . . , bn) held by Alice and Bob,
respectively, such that ai, bi ∈ {1, . . . , s} for 1 ≤ i ≤ n.

Output: Alice learns gdist(A,B).

1. For 1 ≤ i ≤ n, Alice sends E(gai) = (ci,1, ci,2) to Bob.
2. For 1 ≤ i ≤ n, Bob computes E(gbi) = (c′

i,1, c
′
i,2) and defines e′

i =
(c′

i,1/ci,1, c
′
i,2/ci,2) = (di,1, di,2). Then Bob chooses a random ri and com-

putes e′′
i = ((di,1)

ri , (di,2)
ri). Bob sends a random permutation of all the e′′

i

to Alice.
3. Alice decrypts all received e′′

i . Alice counts the total number of decryptions
whose values are not equal to 1. This number is equal to

∑n
i=1 diff(ai, bi) =

gdist(A,B).

Fig. 2. Privacy-Preserving Generalized Hamming Distance Protocol

Proof. We begin by showing correctness. For 1 ≤ i ≤ n, for some random values
ki and �i, we have:

e′′i = (di,1
ri , di,2

ri)

=

(
c′i,1

ri

ci,1
ri

,
c′i,2

ri

ci,2
ri

)

=
(

gbi · hki

gai · h�i
,
gki

g�i

)

= (g(bi−ai) · h(ki−�i), g(ki−�i)).

Thus, e′′i decrypts to g(bi−ai), which is equal to 1 if and only if ai = bi. It follows
that the number Alice obtains in Step 3 of decryptions that are not equal to 1
is the desired distance.

To show privacy, we must show simulators S1 for Alice and S2 for Bob. S1
simulates all internal coin flips of Alice as described in the protocol. S1 simulates
the message from Bob to Alice using a randomly permuted vector of n ElGamal
ciphertexts. These n ciphertexts are chosen so that among these n ciphertexts,
the number of encryptions of 1 is equal to the output of Alice; the remaining
ciphertexts are encryptions of random cleartexts.

S2 simulates all internal coin flips of Bob as described in the protocol. S2
simulates the message from Alice to Bob using n random ElGamal ciphertexts.

The computational indistinguishability immediately follows from the semantic
security of the ElGamal cryptosystem under the DDH assumption.

4.3 Experimental Results

We implemented these privacy-preserving Hamming distance and generalized
Hamming distance protocols using the OpenSSL library in C. We carried out our
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experiments on a NetBSD machine with 2GHz CPU and 512M memory, using
public keys of 1024 bits. The computation cost dominates the overall protocol, so
we measured only the computation time for Alice and Bob. (That is, we did not
measure the communication time.) We measured the computation cost of both
the Hamming distance protocol and the generalized Hamming distance protocol
on binary-valued vectors of varying lengths.

The results of our experiments are shown in Figure 3 for the Hamming dis-
tance protocol and Figure 4 for the generalized Hamming distance protocol. As
expected, the experiments demonstrate that the computation time of Alice and
Bob is linear in the vector size for both protocols. For the same length vectors,
the generalized Hamming distance protocol takes Bob about twice as long to
compute as the Hamming distance protocol.

5 Privacy-Preserving Model Selection

Many models have been proposed in the field of statistics, machine learning,
and data mining, including linear models, neural networks, classification and
regression trees, and kernel methods. One of the problems in data mining is how
to select which kind of model is best for a particular task in a particular setting.
Often, a human expert will make some initial judgment about which model or
models seem likely candidates for the task at hand. With or without expert
guidance, it is very common and useful to use measure the performance of a few
learned models on test data to see which performs the best. Model selection is
also useful for determining the parameters to use for a particular model, such as
the depth of a decision tree.

In the setting of privacy-preserving data mining, it is important that the
privacy that was maintained in learning data mining models is not lost in the
model selection process. As mentioned earlier, in this paper we provide a first
step towards a solution. We address a specific kind of vertical partitioning, in
which one party holds all the data except the class labels and a second party
holds all the class labels.

5.1 Problem Formulation

A database D is vertically partitioned between two parties, Alice and Bob. D
contains n records in total. Alice’s database DA consists of m non-class attributes
(V1, ..., Vm), where each Vi has a finite domain. Bob’s database DB includes only
the class attribute C.

The parties want to collaborate to select an appropriate classification model
to learn based on the combination of their databases—e.g., to decide whether to
learn decision trees or naive Bayes classifiers from their data. However, because
of privacy concerns, they do not wish to reveal their original data to each other.

Cross validation is a popular method for model selection. To carry out cross
validation in a privacy-preserving manner, it is necessary to prevent the parties
from learning anything they would not otherwise learn. In our setting, this means
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that Bob should not learn the predicted class labels for various models applied to
Alice’s data, and Alice should not learn the class labels that Bob has. In addition,
candidate models should themselves be generated in a privacy-preserving way.

We present a privacy-preserving protocol for selecting a model on a database
vertically partitioned so that Bob holds only the class labels. Specifically, we
present a privacy-preserving protocol for selecting a model between decision
trees and naive Bayes classifiers. Our protocol easily extends to any kind of
classifier that can be learned in a privacy-preserving manner.

Privacy-preserving protocols for learning decision trees and for learning naive
Bayes classifiers, respectively, have been proposed by Vaidya and Clifton [32,31].
Here, we use these two protocols as “black boxes” to achieve privacy-preserving
model selection, using k-fold cross validation as an example. Our results extend
straightforwardly to any type of model selection in which the choice of model
depends only on the available data and the number of errors made by each
model. This includes other types of cross validation such as the holdout method
and leave-one-out cross validation.

In k-fold cross validation, both parties partition (their own parts of) the origi-
nal database D into k pieces. The first k−1 pieces are training sets used to learn
the model and the remaining piece is the test set used to validate or test the
learned models. The parties learn both types of candidate model using a privacy-
preserving protocol on each of the training sets (resulting in k− 1 decision trees
and k − 1 naive Bayes classifiers). They then use the training set for estimating
the classification error of each type of learned model. The type of model (i.e., de-
cision tree or naive Bayes classifier) that has the lowest mean classification error
over all k−1 learned models is considered the best, and is then learned (presum-
ably again in a privacy-preserving manner) over the entire dataset. To compute
the mean classification error for each type of model, we show how to compute
the classification error for a single model in a privacy-preserving manner.

5.2 Our Protocol

After multiple classification models are learned from the database D for each
of k − 1 training sets, both parties need to compute the classification error for
each model on the test set. Because Alice has all the non-class attributes, she
can classify each record by herself using the classification model which has been
learned. However, the classification error depends on the real class label which
is held by Bob.

For privacy reasons, Alice cannot send the classification results to Bob, and
Bob cannot send the actual class labels to Alice, as this would breach their
privacy. Similarly, Alice cannot send her data to Bob so that he can apply the
classifiers on her data and compare the results to the actual class labels. To
get around this, we instead compute the classification errors using a privacy-
preserving Hamming distance protocol (or its generalized version, if there are
more than two possible class labels) such as the one presented in Section 3.

Alice’s input to each instance of Hamming distance protocol is a vector A =
(a1, ..., an), where each ai is the class label predicted by Alice using the learned
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Privacy-Preserving k-fold Cross Validation

Input: A database D vertically partitioned between Alice and Bob. Bob holds
the class attribute and Alice holds all the other attributes.

Output: Alice and Bob learn the selected model for D.

1. Alice and Bob partition the database D into k pieces (k −1 training sets and
one test set).

2. Alice and Bob use privacy-preserving protocols on the k − 1 training sets to
learn k − 1 decision trees and k − 1 naive Bayes classifiers.

3. For 1 ≤ i ≤ k − 1, Alice and Bob carry out the following steps:

(a) Alice classifies her records in the test set using the ith learned decision
tree and naive Bayes classifier.

(b) Alice and Bob use the privacy-preserving Hamming distance protocol
(or generalized Hamming distance protocol, as appropriate) for Alice
to compute the classification error from the ith learned decision tree
and from the ith learned naive Bayes classifier on the test set. (That is,
comparing her results computed in Step 3a to Bob’s actual class values
in the test set.)

4. Combining the k − 1 results, Alice computes the mean classification error
for the decision tree and for the naive Bayes classifier, and announces these
results to Bob. Alice and Bob then select the type of model which has the
lower mean classification error.

Fig. 5. Privacy-Preserving Model Selection Protocol

classification model, where n is the number of records in the test set. Bob’s
input is a vector B = (b1, ..., bn), where each bi is the real class label. From the
resulting classification errors, Alice can determine the mean classification error
for each type of model. We summarize the entire protocol in Figure 5.

As we have described it in Figure 5, the protocol leaks partial information in
step 3b—namely, the number of misclassified records for each model on the test
set. However, if desired, one could remove this leak by stopping all of the general-
ized Hamming distance protocols before Bob sends the the final results to Alice,
and using a Yao secure two-party computation on Bob’s encryptions and Alice’s
decryption key for the parties to learn only the mean classification error. However,
this step would add substantial additional cost unless the total number of records
in the test set and total number of training sets are relatively small.

6 Discussion

In this paper, we introduced privacy-preservingmodel selection. This is important
for “extending the boundary” of privacy-preserving protocols to include steps be-
yond the computation of particular data mining models. By extending the bound-
ary of what can be accomplished with efficient privacy-preserving computation,
we bring the adoption of privacy-preserving data mining closer to practice.
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Our privacy-preserving solution enables model selection via cross validation on
a database vertically partitioned between two parties. Our solution is based on a
privacy-preserving primitive for computing the Hamming distance or generalized
Hamming distance of two vectors, which may be of independent interest.

There are a number of interesting directions yet to be studied. Most impor-
tantly, our setting considers a very extreme case of partitioning. We argue this is
realistic in some cases, but clearly it is not applicable in all cases. Additionally, in
order to provide the greatest privacy protection during the model selection pro-
cess not only the raw data, but also the candidate models that are not selected
should be kept private, as revealing multiple models provides more information
about the data than revealing just the selected type of model does.

An attractive option, that could both allow more general vertical partitioning
and protect privacy further by not releasing the individual candidate models,
is to have the models themselves be computed in such a way that they are not
known to the individual parties, but can be used by them through yet another
protocol. To our knowledge, only a small number of privacy-preserving protocols
do this—namely, Vaidya and Clifton’s naive Bayes classifier protocol [31] and
Laur, Lipmaa and Mielikäinen’s support vector machines [24]. By using such
protocols and modifying our Hamming distance protocol to have Alice’s input
shared by Alice and Bob instead of known to Alice, it should be possible to
obtain a solution in which the parties perform model selection without revealing
the candidate models considered. This kind of solution would also be appealing
because it can maintain the privacy of the classifier results even in the case that
both parties know the real class labels.

Our proposed protocol defends against semi-honest adversaries. It is open to
extend them to efficient protocols that provide security against malicious adver-
saries. It might also be interesting to consider other distance metrics such as the
L1-distance that allow for finer granularity by considering some wrong answers
more acceptable than others. Finally, as the privacy definitions in secure mul-
tiparty computation are very strict, relaxed yet meaningful privacy definitions
that enable more practical protocols deserve further exploration.
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Abstract. In this paper, we focus on the problem of preserving the pri-
vacy of sensitive relationships in graph data. We refer to the problem of
inferring sensitive relationships from anonymized graph data as link re-
identification. We propose five different privacy preservation strategies,
which vary in terms of the amount of data removed (and hence their util-
ity) and the amount of privacy preserved. We assume the adversary has
an accurate predictive model for links, and we show experimentally the
success of different link re-identification strategies under varying struc-
tural characteristics of the data.

Keywords: privacy, anonymization, identification, link mining, social
network analysis, noisy-or, graph data

1 Introduction

The goal of data mining is discovering new and useful knowledge from data.
Sometimes, the data contains sensitive information, and it needs to be sanitized
before it is given to data mining researchers and the public in order to address
privacy concerns. Data sanitization is a complex problem in which hiding private
information trades off with utility reduction. The goal of sanitization is to remove
or change the attributes of the data which help an adversary infer sensitive
information. The solution depends on the properties of the data and the notions
of privacy and utility in the data.

Most of the work in this area makes the assumption that the data is described
by a single table with attribute information for each of the entries. However, real-
world datasets often exhibit more complexity. Relational data, often represented
as a multi-graph, can exhibit rich dependencies between entities. The challenge of
anonymizing graph data lies in understanding these dependencies and removing
sensitive information which can be inferred by direct or indirect means.

Very little work has been done in this direction, and there has been a growing
interest in it. The existing work looks at the identifying structural properties of
the graph nodes [2,7], or considers relations to be attributes of nodes [13]. Our
work assumes that the anonymized data will be useful only if it contains both
structural properties and node attributes. We study anonymization techniques
to match this assumption.
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Another distinction of our approach is that, unlike existing work on privacy
preservation which concentrates on hiding the identity of entities, we look at
the case where relationships between entities are to be kept private. Finding out
about the existence of these sensitive relationships leads to a privacy breach. We
refer to the problem of inferring sensitive relationships from anonymized graph
data as link re-identification.

Examples of sensitive relationships can be found in social networks, communi-
cation data, search engine data, disease data and others. In social network data,
based on the friendship relationships of a person and the public preferences of
the friends such as political affiliation, it may be possible to infer the personal
preferences of the person in question as well. In cell phone communication data,
finding that an unknown individual has made phone calls to a cell phone number
of a known organization can compromise the identity of the unknown individ-
ual. Another example is in search data: being able to link search queries made
by the same individual can give personal information that helps identify that
individual. In hereditary disease data, knowing the family relationships between
individuals who have been diagnosed with hereditary diseases and ones that have
not, can help infer the probability of the healthy individuals to develop these
diseases.

We consider the node data to be anonymized using a known single-table defi-
nition such as k-anonymization [16] or the more recently proposed t-closeness [8].
For the edge data, we propose five different anonymization strategies. The most
conservative approach is to remove the relationships altogether, thus preserving
any privacy that these relationships may compromise. We assume that while all
of the sensitive relationships are removed, all or a portion of the relationships
of other types are left intact in the anonymized data. We propose a method
which allows modeling the influence of data attributes on sensitive relationships,
and studying how different anonymization techniques can preserve privacy. The
privacy breach is measured by counting the number of sensitive relationships
that can be inferred from the anonymized data. The utility of the data is mea-
sured by counting how many attributes or observations have to be deleted in the
sanitization process.

To formalize privacy preservation, Chawla et al. [4] propose a framework based
on the intuitive definition that “our privacy is protected to the extent we blend
in the crowd.” What needs to be specified in this general framework is an ab-
straction of the concept of a database, the adversary information and its func-
tionality, and when an adversary succeeds. Starting from this idea, we define
the relational privacy framework for link re-identification. After the background
overview in Section 2, we define the data model in Section 3. We then discuss
methods for anonymizing graph data and the resulting adversary information in
Section 4. Section 5 covers graph-based privacy attacks, Section 6 discusses gen-
eral link re-identification attacks, and Section 7 discusses link re-identification
in anonymized data and when an adversary succeeds. Section 8 presents the
benefits and disadvantages of each anonymization method in an experimental
setting, and Section 9 contains concluding remarks and ideas for future work.
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2 Background and Related Work

Until recently, the literature on privacy preservation considered the data to be a
single table, in which the rows represent records, and the columns represent at-
tributes [1,3,8,9,12,18]. However, real-world data is often relational, and records
may be related to one another or to records from other tables. For example,
a database for studying hereditary diseases can contain both patient medical
records and family relationships between patients. A database for studying the
social network structure in a university department can contain both student in-
formation together with enrollment and research group data. Another example
is data for studying Internet traffic, in which the sequences of packet traces are
related to each other [14].

It is well known that even in single-table data, removing the identifying infor-
mation such as social security number is not enough for preserving the privacy
of individuals represented in data [18]. One of the most popular techniques for
anonymizing single table data is k-anonymity, in which the quasi-identifying
attributes of the table records are altered in a way that each record becomes
indistinguishable from at least k − 1 other records [16]. The set of records with
the same anonymized attributes forms an equivalence class. Since k-anonymity
was first introduced, various methods for k-anonymizing data have been devel-
oped in the research community [1,3]. Recently proposed anonymity definitions
such as l-diversity [9] and t-closeness [8] address some of the deficiencies of k-
anonymity. l-diversity addresses the concern that an equivalence class may not
contain diverse enough sensitive attributes. t-closeness addresses the stronger
concern that the distribution of sensitive attributes in an equivalence class may
not match the distribution of sensitive attributes in the whole data set. More
definitions of privacy and information disclosure can be found in [4,5,10,11].

While it is possible to represent the nodes of a graph in a single table if the
nodes have the same type, it is not clear how to do that when the nodes exhibit
relationships and when there are nodes of different types. Very little work has
been done on privacy preservation in graph data. Only recently, there has been
privacy research on identifying structural properties of graph nodes [2,7], or on
applying k-anonymity to multi-relational data [13]. The model of Miklau et al. [7]
defines k-candidate anonymity for graph data based on the degrees of the nodes
in the neighborhoods of the nodes to be anonymized. Their experiments on real-
world datasets show that the more someone knows about the neighborhood of
a node, the higher the probability for this node to be identified uniquely. They
create an approach for anonymizing structure by random deletion and addition
of edges. Their model assumes that the nodes and edges do not contain any
attributes besides a random identifier; here, we consider models with attributes
and links.

Similarly, Backstrom et al. [2] consider graphs in which the structural proper-
ties of the anonymized nodes can help an adversary to find the real-world entities
behind these nodes. They consider social networks in which the node attributes
are stripped off, and the edges are kept intact. They describe two families of
attacks on the privacy of communication in these networks: active and passive
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attacks. In the active attacks, the adversary “inserts” himself in the network by
creating connections with people of interest, and then tries to find himself in the
anonymized version. These attacks assume that the owner of the data releases
the full graph data periodically. The passive attacks assume that the adversary
and his colluding friends can identify themselves in the network.

Nergiz and Clifton [13] recognize the problem that existing k-anonymizing
approaches apply only to single-table data, and they extend k-anonymity to ap-
ply to relational data. Their approach abstracts the knowledge about a private
entity from multiple tables into a k-anonymized tree. It keeps relationships be-
tween entities of different types but it does not discuss relationships between the
entities whose privacy is a concern. Not keeping such relationships would remove
some of the structural properties which are interesting in graph data.

Privacy preservation in graph data is closely related to link mining. Graph
data exhibits dependencies, and they can be used to learn about identities, classes
and relationships represented in it. They have been studied in the link mining
community [6], and the techniques developed for collective classification, object
identification and link prediction can be used to learn hidden properties of the
data. If these hidden properties are sensitive, then there is a privacy breach. In
this paper, we are mostly concerned with link prediction. Link prediction uses
properties of the graph in order to determine whether two nodes in the graph
exhibit a relationship of a particular type. For example, it may predict whether
two people in a social network graph are likely to be friends. The knowledge
that two people have many opportunities for communication makes them more
likely to be friends, and it can be exploited by an adversary to predict likely
friendships.

3 Data Model

We consider graph data which describes entities and relationships between en-
tities. We assume that the relationships are binary relationships. In a graph,
entities are represented by nodes, and relationships by edges. In general, we can
have different types of nodes and different types of edges. For the purposes of
this paper, we focus on the case where there is a single node type and multiple
edge types. We distinguish one of the relationship types as the sensitive relation-
ship. This is the relationship which we are interested to hide from the adversary.
The nodes and edges can have associated attributes. In addition, the graph has
structural properties. Structural properties of a node include node degree and
neighborhood structure.

More formally, we consider a database describing a multi-graph G = (V,
E1, . . . , Ek, Es), composed of a set of nodes V and sets of edges E1, . . . , Ek, Es.
Each node vi represents an entity of interest. An edge e1

i,j represents a relation-
ship of type E1 between two nodes vi and vj . The E1, . . . , Ek are the observed
relationships, and Es is the sensitive relationship, meaning that it is undesirable
to disclose the es edges to the adversary.
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a)

b)

c)

d)

e)

f)

Fig. 1. The original data graph (a)) and the output from five anonymization approaches
to graph data: b) revealing the observations between nodes, c) removing 50% of the
observations , d) revealing all the observations between equivalence classes of nodes
(cluster-edge anonymization), e) constrained revealing of the observations between
equivalence classes of nodes (cluster-edge anonymization with constraints), f) remov-
ing all relational observations. There are three different edge types in the original data
graph represented by different line styles. Clusters resulting from node anonymization
are circled with dotted lines.

In the process of anonymizing the data, the sensitive relationships are always re-
moved, i.e., they are not provided in the released data. However, it may be possible
to predict some of these relationships using other observed relationships and/or
node attributes. For the purposes of this paper, we focus on predicting sensitive
edges based on the observed edges, but it is straightforward to include node and
edge attributes and interesting to also consider structural properties. If the sensi-
tive edges can be identified, then we say that there has been a privacy breach.

In addition, the data can include certain constraints which specify the number
of relationships of a particular type or the number of relationships connecting
any two nodes. Constraints can also be inequality constraints describing the
maximum or minimum number of relationships.

As a motivating example, consider the case where the entities are students,
and the relationships between students vi and vj include taking a class c together
(classmates(vi, vj , c)), belonging to the same research group (groupmates(vi,
vj , g)), and being friends (friends(vi, vj)). We can consider the class and re-
search groups as attributes of the edges, so that students can take more than
one class together, and they can belong to more than one research group. In this
case, we may consider friends to be the sensitive relationship. We are interested
in understanding how difficult it is to determine friendship based on class and
research group rosters.
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4 Graph Anonymization

The process of anonymization involves taking the unanonymized graph data,
making some modifications, and constructing a new released graph which will be
made available to the adversary. The modifications include changes to both the
nodes and edges of the graph. We discuss several graph anonymization strategies
and, for each approach, we discuss the tradeoffs between privacy preservation
and the utility of the anonymized data.

We assume that the adversary has the information contained in the released
graph data, and the constraints on the data. The adversary succeeds when she
can figure out whether two nodes exhibit a sensitive relationship, i.e., when she
is able to correctly predict a sensitive link between them. For example, if the
adversary can figure out which students are likely to be friends given the released
graph, then the data discloses private information about the two individuals.

4.1 Node Anonymization

We assume that the nodes have been anonymized with one of the techniques
introduced for single table data. For example, the nodes could be k-anonymized
using t-closeness [8]. This anonymization provides a clustering of the nodes into
m equivalence classes (C1, . . . , Cm) such that each node is indistinguishable in
its quasi-identifying attributes from some minimum number of other nodes. We
use the following notation C(vi) = Ck to specify that a node vi belongs to
equivalence class Ck.

The anonymization of nodes creates equivalent classes of nodes. Note, how-
ever, that these equivalent classes are based on node attributes only, and inside
each equivalence class, there may be nodes with different identifying structural
properties and edges.

4.2 Edge Anonymization

For the relational part of the graph, we describe five possible anonymization
approaches. They range from one which removes the least amount of information
to a very restrictive one, which removes the greatest amount of relational data.
Figure 1(a) shows a simple data graph in which there are ten nodes and eight
observed edges. There are three edge types, and each one is represented by a
different line style. We will illustrate each of our techniques on this graph. For
each approach, we discuss the tradeoffs between privacy preservation and the
utility of the anonymized data.

Intact edges. The first (trivial) edge anonymization option is to only remove
the sensitive edges, leaving all other observational edges intact. Figure 1(b) shows
an illustration of this technique applied to the original data graph of Figure 1(a).

In our running example, we remove the friendship relationships, since they are
the sensitive relationships, but we leave intact the information about students
taking classes together and being members of the same research group. Since
the relational observations remain in the graph, this anonymization technique
should have a high utility. But it is likely to have low privacy preservation.
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Intact-Edge Anonymization Algorithm
1: Input: G = (V, E1, . . . , Es)

2: Output: G′ = (V ′, E1′
, . . . , Ek′

)
3: V’=anonymize-nodes(V)
4: for t=1 to k do
5: Et′

= Et

6: end for

Fig. 2. Algorithm for anonymizing graph data by removing only the sensitive edges

Partial-edge removal. Another anonymization option is to remove some por-
tion of the relational observations. We could either remove a particular type of
observation which contributes to the overall likelihood of a sensitive relationship,
or remove a certain percentage of observations that meet some pre-specified cri-
teria (e.g., at random, connecting high-degree nodes, etc.). Figure 1(c) shows an
illustration of this technique when the edges are removed at random.

This partial edge removal process should increase the privacy preservation and
reduce the utility of the data as compared to the previous method. Removing
observations should reduce the number of node pairs with highly likely sensitive
relationships but it does not remove them completely. For those pairs of nodes,
private information may be disclosed.

Partial-Edge Anonymization Algorithm
1: Input: G = (V, E1, . . . , Ek, Es), percent-removed

2: Output: G′ = (V ′, E1′
, . . . , Ek′

))
3: V’=anonymize-nodes(V)
4: for t=1 to k do
5: Et′

= Et

6: removed = �percent-removed ×‖Et′‖�
7: for i=1 to removed do
8: ei = random edge from Et′

9: Et′
= Et′ \ {ei}

10: end for
11: end for

Fig. 3. Algorithm for anonymizing graph data by removing randomly a portion of the
observed edges

Cluster-edge anonymization. In the above approaches, while the nodes had
been anonymized, the number of nodes in the graph was still the same, and
the edges were essentially between copies of the anonymized nodes. Another
approach is to collapse the anonymized nodes into a single node for each cluster,
and then consider which edges to include in the collapsed graph.

The simplest approach is to leave the sets of edges intact, and maintain the
counts of the number of edges between the clusters for each edge type. We refer to
this technique as cluster-edge anonymization. Figure 4 presents the algorithm for
this technique, and Figure 1(d) shows an illustration of the result from applying
the algorithm.
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Cluster-Edge Anonymization Algorithm
1: Input: G = (V, E1, . . . , Ek, Es),

2: Output: G′ = (V ′, E1′
, . . . , Ek′

))
3: V ′ = {C1, . . . , Cm}
4: for t=1 to k do
5: Et′

= ∅
6: for all (vi,vj)∈ Et do
7: Ci = C(vi)
8: Cj = C(vj)
9: Et′

= Et′ ∪ {(Ci, Cj)}
10: end for
11: end for

Fig. 4. Algorithm for cluster-edge anonymization technique

Cluster-edge anonymization with constraints. Next, we consider using
a stricter method for sanitizing observed edges than the previous technique.
The cluster-edge anonymization with constraints technique creates edges be-
tween equivalence classes as above, but it requires the equivalence class nodes
to have the same constraints as any two nodes in the original data. For exam-
ple, if there can be at most two edges of a certain type between entities, there
can be at most two edges of a certain type between the cluster nodes. This, in
effect, removes some of the count information that is revealed in the previous
anonymization technique.

Cluster-Edge Anonymization with Constraints Algorithm
1: Input: G = (V, E)
2: Output: G′ = (V ′, E′)
3: V ′ = {C1, . . . , Cm}
4: for t=1 to k do
5: Et′

= ∅
6: for all (vi, vj) ∈ Et do
7: Ci = C(vi)
8: Cj = C(vj)
9: if (Ci, Cj) /∈ Et′ then

10: Et′
= Et′ ∪ {(Ci, Cj)}

11: end if
12: end for
13: end for

Fig. 5. Algorithm for cluster-edge with constraints anonymization technique

In order to determine the number of edges of a particular type connecting
two equivalence classes, the anonymization algorithm picks the maximum of the
number of edges of that type between any two nodes in the original graph. In
our earlier example, if the maximum number of common classes that any pair
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of students from the two equivalence classes takes is one class together, then
the equivalence classes are connected by one class edge. Figure 1(e) shows an
illustration of this technique.

This information will keep some of the utility of the data but it will say
nothing of the distribution of observations. The anonymized data hides whether
all observations appear on one two-node edge or on all two-node edges, and
whether they ever appear in the same two-node edge. This may reduce the
privacy breach on each sensitive relationship.

Removed edges. The most conservative anonymization option is to remove
all the edges. Depending on the intended uses of an anonymized social network,
removing the node and/or edge attributes completely may be undesirable. For
example, if one wants to know whether any first-year students took a partic-
ular course together, then all the three types of information, i.e., edges, edge
attributes and node attributes, are necessary. In our toy example, while taking
a course together is information contained in a network edge, the name of the
course is an edge attribute, and the year of enrollment is a node attribute. In
this case, this anonymization technique would lead to very low utility, yet high
privacy preservation.

No-Edge Anonymization Algorithm
1: Input: G=(V,E)
2: Output: G’=(V’,∅)
3: V’=anonymize-nodes(V)

Fig. 6. Algorithm for anonymizing graph data by removing the edges

5 Graph-Based Privacy Attacks

According to Li et. al. [8], there are two types of privacy attacks in data: identity
disclosure and attribute disclosure. In graph data, there is a third type of attack:
link re-identification. Identity disclosure occurs when the adversary is able to
determine the mapping from an anonymized record to a specific real-world en-
tity (e.g. an individual). Attribute disclosure occurs when the adversary is able
to infer the attributes of a real-world entity more accurately than it would be
possible before the data release. Identity disclosure often leads to attribute dis-
closure [8]. Both identity disclosure and attribute disclosure have been studied
very widely in the privacy community [1,2,3,4,7,8,9,11,12,13,16,18].

Rather than focus on these two kinds of attack, the focus of our paper is on
link re-identification. Link re-identification is the problem of inferring that two
entities participate in a particular type of sensitive relationship or communica-
tion. Sensitive conclusions are more general statements that an adversary can
make about the data, and can involve both node, edge and structural informa-
tion. These conclusions can be the results of aggregate queries. For example, in
a database describing medical data informal about company employees, finding
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that almost all people who work for a particular company have a drinking prob-
lem may be undesirable. Depending on the representation of the data, this can
be revealed by using both the node attributes and the co-worker relationship.

6 Link Re-identification Attacks

The extent of a privacy breach is often determined by data domain knowledge of
the adversary. The domain knowledge can influence accurate inference in subtle
ways. The goal of the adversary is to determine whether a sensitive relation-
ship exists. There are different types of information that can be used to infer a
sensitive relationship: node attributes, edge existence, and structural properties.
Based on the domain knowledge of the adversary, she can construct rules for
finding likely sensitive relationships. In this work, we assume that the adversary
has an accurate probabilistic model for link prediction, which we will describe
below.

In our running example, the sensitive friendship link may be re-identified
based on node attributes, edge existence or structural properties. For example,
consider two student nodes containing a boolean attribute “Talkative.” Two
nodes that both have it set to “true” may be more likely to be friends than two
nodes that both have it set to “false.” This inference is based on node attributes.
An example of re-identification based on edge existence is two students in the
same research group who are more likely to be friends compared to if they are
in different research groups. A re-identification that is based on a structural
property such as node degree would say that two students are more likely to be
friends if they are likely to correspond to high degree nodes in the graph. A more
complex observation is one which uses the result of an inferred relationship. For
example, if each of two students is highly likely to be a friend with a third person
based on other observations, then the two students are more likely to be friends
too.

6.1 Link Re-identification Using Observations

We assume that the adversary has a probabilistic model for predicting the ex-
istence of a sensitive edge based on a set of observations O: P (es

ij |O). In this
work, we assume a simple noisy-or model [15] for the existence of the sensitive
edge. The noisy-or model can capture the fact that each observed edge con-
tributes (in a probabilistic way) to the probability of the sensitive edge existing;
it makes the simplifying assumption that each factor is an independent cause for
the sensitive edge. Here, we focus on re-identification based on edge existence,
so the observations that we consider are sets of edges, el

ij . For simplicity, we
label these observations o1, . . . , on. For each observed edge, we assume that we
have a noise parameter, λ1, . . . , λn, and, in addition, we have a leak parameter
λ0 which captures the probability that the sensitive edge is there due to other,
unmodeled, reasons. A noise parameter λi captures the independent influence
of an observed relationship oi on the existence of a sensitive relationship. Then,
according to the noisy-or model, the probability of a sensitive edge is:
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P (es
ij = 1) = P (es

ij = 1|o1, ..., on) = 1 −
n∏

l=0

(1 − λl)

The above formula applies only when the observations are certain. It is also
possible that the observation existence is not known. In that case, there are
probabilities P (o1), . . . , P (on) associated with the existence of each observation,
and the probability of a sensitive edge is:

P (es
ij = 1) =

∑

{o}
P (es

ij = 1|o)
n∏

k=1

P (ok)

where

P (es
ij = 1|o) = 1 − (1 − λ0)

n∏

l=1

(1 − λl)ol

More details about this model can be found in [17].
The noisy-or function is applicable when there are a few observations that

can cause an event, and each one can contribute positively to the likelihood of
the event, independent of the rest. The function has some nice properties: 1) the
result of it is always between 0 and 1 when the input probabilities are in that
range; 2) the final result is independent of the order in which the observations
are added; 3) it can accommodate different number of observations; 4) adding
a new positive observation always increases the overall likelihood. We use this
function to measure how likely each sensitive relationship is, and to find whether
there are parts of the graph that are vulnerable to an adversary attack. It is also
possible to express the dependence between events in an explicit probability
model such as a Bayesian or a Markov network, when the dependences between
observations are known.

6.2 Amount of Information Disclosed

Based on the noisy-or model for each pair of nodes, it is possible to determine
the number of node pairs that are likely to participate in a sensitive relationship.
In the anonymized data, it is desirable to have few sensitive relationships which
can be inferred with high likelihood. To formalize this desirable property, we can
compute the percentage of all possible two-node relationships which have a high
likelihood and make sure that it is below some allowed level δ:

|relationships(P (es
ij) > ρ)|

|V |2 < δ (1)

where ρ is the threshold for predicting that a sensitive relationship exists and
relationships(P (es

ij) > ρ) returns the set of all sensitive relationships which
have likelihood above ρ. For example, if it is true for the given data that 15%
of the possible pair relationships have a true likelihood of exhibiting a sensitive
relationship higher than 0.8, then
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|relationships(P (es
ij) > 0.8)|

|V |2 <= 0.15.

For each anonymization technique, it is possible to find the highest possible δ that
satisfies a particular ρ level. This can be used to compare the privacy preservation
for each technique. The higher the δ, the lower the privacy preservation.

6.3 Utility

Utility in the data is hard to measure, and we make an assumption that the
more observations there are in the anonymized data, the better. To measure
utility, we use a very simple approach. We count the number of observations
which were removed in the process of anonymization. The lower the number of
removed observations, the higher the overall utility. For the intact edge and the
cluster-edge anonymization techniques, no relational observations are deleted,
therefore, these two techniques have the highest utility. For the partial edge
removal technique, the utility depends on the percentage of edges removed. For
the cluster-based with constraints technique, it is much lower, since the graph
is collapsed, and many edges are removed. The exact number can be computed
using the properties and constraints of the data such as number of nodes, edges of
each type, and the size of the equivalence classes. Note that a more sophisticated
measure of utility would also consider the loss of structural properties in the
anonymized data. In the case when all the edges are removed, the utility is 0.

7 Link Re-identification in Anonymized Data

In the first two types of link anonymization (intact and partial), the noisy-or
model can be used directly to compute the probability of a sensitive edge. In the
other two cases, one has to consider the probability that an observed edge exists
between two nodes, and apply the noisy-or.

7.1 Link Re-identification in Cluster-Edge Anonymization

In the case of keeping edges between equivalence classes, the probability of an
observation existing between two nodes is not given and it needs to be estimated.
The noisy-or function will need to take into consideration the probability asso-
ciated with each observation in order to compute the likelihood of a sensitive
relationship. When the number of relationships of each type (e.g., course, re-
search group, etc.) between two equivalence classes is given, the distribution is
not uniform, and the probability of an observation P(o)=P(observation(vi, vj))
existing between two students can be computed directly from the counts of rela-
tionships between their equivalence classes. P(classmates(vi, vj , c)) expresses
the probability that there exists a class edge between any two students vi and vj

from two equivalence classes C(vi) and C(vj), i.e., the students take a course c
together. It is equal to the number of possible student pairs from the two equiv-
alence classes who take a course together —classmates(C(vi), C(vj))— as a
fraction of the number of possible relationships in the graph |V |2.
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7.2 Link Re-identification in Cluster-Edge Anonymization with
Constraints

In the constrained cluster-edge anonymization approach, the number of rela-
tionships between equivalence classes is not given. Therefore, the probability
of an observation existing between any two edges has to be taken into ac-
count in the noisy-or model. To estimate this probability, an adversary can
assume a uniform distribution, meaning that the probability of an observa-
tion existing between any two edges is the same for all edges in the graph.
This estimate is worse than the cluster-edge anonymization method. Using the
constraints on the data, it is possible to get estimates of this probability. For
example, if it is known that there are 50 pairs of students who take courses
together, and there are 100 possible pairs, then the probability of any two stu-
dents taking any class c together is P(classmates(vi, vj , c))=0.5. If the adver-
sary knows the number of offered courses c, the number of courses per per-
son n, the number of students s = |V |, and assumes that all courses have
the same number of people p = s∗n

c , then the number of possible pairs who
take courses together can be calculated as n ∗ (p − 1). This number can be
used to compute in a manner similar to the cluster-edge anonymization method
P(classmates(vi, vj , c))=

n∗(p−1)
|V |2 .

One can also use an expected value of any two-node relationship to be sensitive
by looking at the likelihood distribution of all relationships. However, we found
that this does not measure privacy well because an adversary is more interested
in the highly likely relationships.

An observation probability shows the percentage of edges between two nodes
from two different equivalence classes that contain the observation. For example,
if the two equivalence classes have exactly 10 nodes each, and the observation ex-
ists for 30 of the two-node edges, then the edge probability is P(observation(vi,
vj))=0.3 where observation(vi, vj) is either classmates(vi, vj , c), or
groupmates(vi, vj , g) for any c and g. This increases the utility of the data
as compared to the case when no probabilities are included, but it can also
decrease the privacy preservation. An exception is the case when observations
between equivalence classes have exactly the same distribution as the overall
uniform distribution.

8 Experiments

The effectiveness of the anonymization approaches depends on the structural
and statistical characteristics of the underlying graph. In order to study the in-
fluence of each anonymization approach on privacy preservation, we apply them
to synthetic data generated under varying statistical and structural assumptions
and compute the information disclosed. We show how many relationships are re-
vealed at different probability thresholds. First, we describe the data generator.
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8.1 Data Generator

The data generator creates data according to the data model described in Sec-
tion 3. The input to the data generator includes: the number of nodes, maximum
number of nodes which can participate in a relationship (e.g., the maximum num-
ber of students taking the same class), the maximum number of relationships
that each student can have with any other student (e.g., maximum number of
classes that a student can take). For all observation types, the probability of two
nodes exhibiting a sensitive relationship given the observation type is given and
the leak probability, the probability of two nodes exhibiting a sensitive relation-
ship due to unobserved causes.

For the concrete example, the data generator starts by creating a set of stu-
dents, a set of classes, and a set of research groups. There are constraints on
how many classes each student takes, and on how many research groups each
student belongs. There are also constraints on the maximum number of students
per class and on the maximum number of students per group. For each student,
the generator picks random classes to enroll into up to the maximum number
of classes per student possible. Similarly, each student is assigned to a random
research group.

The nodes in the data graph represent students. There is a classmates
edge connecting two students for each class they take together, and there is
groupmates edge if they belong to the same research group. These pieces of
information represent observations indicating that two students may be friends,
i.e., that they may exhibit a sensitive relationship. The ground truth is generated
by computing the probability of a friendship between each two students using
the noisy-or model, and assigning the friendship a true value with a probability
equal to that likelihood.

The parameters given to the data generator can be varied. We would like to
explore graphs which vary in their density, therefore we allow the number of
classes and research groups to vary while fixing the number of nodes/students
to 100. The constraints on the data are that each student takes two classes, and
belongs to one research group. Also, a class can have no more than 25 people,
and a group can have no more than 15. We picked probabilities which make
sense in the domain. The prior probability of two students knowing each other
is P(friends(vi, vj))=0.2. It is relatively high because the students are from
the same department. The probability that two students know each other if they
are in the same class c is P(friends(vi, vj)—classmates(vi, vj , c))=0.4. The
probability that two students know each other if they are in the same research
group is P(friends(vi, vj)—groupmates(vi, vj , c))=0.6.

8.2 Evaluating Privacy Preservation in Anonymized Data

We begin by studying the privacy preservation in the data that results from each
of the anonymization techniques. In particular, we study the number of correctly
identified sensitive relationships for the following anonymization functions: 1)
when the anonymization function leaves the edges between nodes intact (4.2),
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2) when it removes 50% of the observations chosen at random (4.2), 3) when it
leaves edges between node equivalence classes in the cluster-edge anonymization
(4.2), and 4) when it leaves edges between node equivalence classes with a con-
strained number of observations (4.2). For the last two, each node is assigned
randomly to an equivalence class. We vary k, the number of nodes in each equiv-
alence class, and show the results for k = 2 and k = 6 because they exhibit the
tendencies of varying k well.

Correctly Identified Senstive Relationships after Anonymization 
dense graph: 2466 observed edges,

10 groups, 10 classes

Intact
k=2, cluster-edge
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50% edges
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Fig. 7. Comparison between the number of sensitive relationships found after each of
six anonymization techniques has been applied. The number of revealed friendships
decreases as the friendship likelihood threshold increases. The two constrained cluster-
edge methods (at k = 2 and k = 6) reveal the same number of relationships in both
graphs. In the sparse graph, the cluster-edge method at k = 6 (not constrained) also
overlaps with the two constrained methods.

The data was generated with the default parameters, varying the number of
classes and the number of research groups between 10 and 30. A graph, in which
there are 10 research groups and 10 classes, is very dense, and a graph at the other
extreme with 30 research groups and 30 classes is very sparse. We show these
“extreme” cases in Figure 7 and Figure 8. To account for the randomness in the
generated graph, we ran the experiments on 100 generated graphs, and present
the average performance. Note that when using the default data parameters (at
most two classes taken by each student and at most one group of which a student
is a member), the maximum possible likelihood for their friendship is 0.89.

We measure the precision, recall rate and the number of inferred sensitive
relationships in the anonymized graphs. The precision shows how many of the
predicted sensitive relationships are true sensitive relationships. The recall rate
measures what portion of the true sensitive relationships can be predicted. Trans-
lated into the privacy domain, the recall rate measures what portion of the true
sensitive relationships have been compromised, and the precision shows what is
the chance that a predicted relationship is really a sensitive one. For example, if
the analysis predicts 10 sensitive relationships and only 5 of them are true, then
the precision is 0.5. If there are a total of 100 true sensitive relationships in the
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Prediction Precision for Sensitive Relationships after Anonymization
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Fig. 8. Comparison between the precision of predicted friendships found after one of
six anonymization techniques has been applied. At low threshold values, the number
of revealed friendships is large but the precision is low. The precision of the method
that removes 50% of the edges at random overlaps with the precision of the intact-edge
method in the sparse graph, and nearly overlaps in the dense graph. The precision of
the two constrained cluster-edge methods (at k = 2 and k = 6) overlap as well.

network, then the recall rate is 0.05. Ideally, a model for predicting sensitive in-
formation would should have a high precision and a high recall rate when tested
on the original data, and a low precision and a low recall rate when tested on
the anonymized data.

A low precision in the anonymized data is more crucial than a low recall rate.
A combination of a high precision with a low recall rate in the anonymized data
is undesirable because it means that the anonymization can hide most of the
sensitive relationships but the ones that can be predicted are highly likely to be
true. Results with a low precision and a high recall rate are not as bad. In this
case, even though the anonymization allows many of the true sensitive relation-
ships to be predicted, the true sensitive relationships are indistinguishable from
many non-sensitive relationships.

8.3 Results

Figure 7 shows a comparison between the number of sensitive relationships in-
ferred after each of six anonymization techniques has been applied. It shows that
at higher thresholds (0.6 and 0.8), keeping all the edges between node equiva-
lence classes preserves privacy much better than deleting 50% of the two-node
edges, while having higher utility as discussed in Section 6.3. As expected, for
lower k, the privacy preservation is lower: the number of revealed relationships
is higher in the data anonymized with the cluster-edge method. In the data
anonymized with the cluster-edge method with constraints, varying k yielded to
the same results, which is why the graphs of k = 2 overlap with the graphs, in
which k = 6.
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Prediction Precision and Recall Rates at Various Classmate Densities
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Fig. 9. Comparison between the precision at different classmate density levels (a))
shows that at high density levels, the cluster-edge anonymization preserve privacy as
badly as the anonymization which deletes 50 % of the edges. Moreover, the recall rate
at these levels (b)) is much higher for the cluster-edge method. The groupmate density
is kept constant at 0.1.

We also ran the experiments for other combinations of class and group pa-
rameters in the range [10,30]. The experiments confirmed that as the number
of observed edges decreases, so does the number of correctly identified sensitive
relationships. However, the behavior at different thresholds is proportionately
the same for all anonymization methods except the cluster-edge method. In the
cluster-edge method, the privacy is preserved better in the sparse graph for both
k levels, as seen by comparing the dense and the sparse graph results at thresh-
old 0.4. In the sparse graph, the results when k = 6 are the same as the ones of
the cluster-edge with constraints.

Figure 8 shows that even though lower probability thresholds reveal more
sensitive relationships, the precision is low. At higher probability thresholds, the
precision is high but on a very small number of predicted relationships.

Experimenting with the number of nodes in the network showed that the
precision and sensitivity results were invariant to the network size when the
friendship, groupmate and classmate densities were kept constant. The density
values were 0.36, 0.1 and 0.2, respectively. The tested networks were of size 100,
200, 300 and 400 nodes. Other constant parameters were the number of groups,
10, the number of classes, 10, and the k-anonymization parameter k = 6.

We also varied the multigraph classmate density by varying the number of
classes each student joined. Since this parameter was used in the data generator
as well, it affected the friendship density of the original graph. The correlation
between the two densities was positive. We found that at high classmate density
levels the claim that the cluster-edge anonymization preserves privacy better
than the anonymization which deletes 50% of the edges no longer held. As Fig-
ure 9a) shows that as the class density goes above 0.4 (friendship density is
0.63), the precision of predicted sensitive links is almost the same for the two
methods. Moreover, as Figure 9b) at levels above 0.5 (friendship density is 0.76),
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the data anonymized with the cluster-edge method has much higher recall rate.
Again, the number of nodes was 100, the number of groups was 10, the number
of classes was 10, and the k-anonymization parameter k was 6.

9 Conclusion

In this paper, we have focused on the problem of link re-identification. We have
proposed several approaches for anonymizing graph data and done an initial
empirical evaluation of the effectiveness of the different strategies. The work is
preliminary, in that we have made very specific assumptions about the model
and the data generator parameters. However, because understanding and appre-
ciating the subtleties in the effectiveness of techniques is such an important and
timely topic, we hope that this work will motivate further research in the topic.
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